On the rigidity matroid of highly connected graphs

Dániel Garamvölgyi (Alfréd Rényi Institute of Mathematics, Budapest) 13th Hungarian-Japanese Symposium on Discrete Mathematics and Its Applications

Institute of Science Tokyo, Tokyo, May 27, 2025

Reconstruction from the graphic matroid

Let G be a graph, and let $\mathcal{M}(G)$ denote its graphic matroid.

Theorem (Whitney 1933)

If G is 3-connected, then $\mathcal{M}(G)$ uniquely determines G.

This means that (in principle) we can reconstruct G from $\mathcal{M}(G)$.

Reconstruction from the graphic matroid

Let G be a graph, and let $\mathcal{M}(G)$ denote its graphic matroid.

Theorem (Whitney 1933)

If G is 3-connected, then $\mathcal{M}(G)$ uniquely determines G.

This means that (in principle) we can reconstruct G from $\mathcal{M}(G)$.

In this talk I will

- explain this result, and
- describe generalizations to other families of matroids associated to graphs.

Identifying vertex stars in the graphic matroid

Let
$$G = (V, E)$$
 and $\mathcal{M}(G) = (E, r)$.

Key observation

To reconstruct G from $\mathcal{M}(G)$, it suffices to identify which subsets of the ground set correspond to vertex stars.

Identifying vertex stars in the graphic matroid

Let
$$G = (V, E)$$
 and $\mathcal{M}(G) = (E, r)$.

Key observation

To reconstruct G from $\mathcal{M}(G)$, it suffices to identify which subsets of the ground set correspond to vertex stars.

- If $F \subseteq E$ is a connected^{*} hyperplane^{**} in $\mathcal{M}(G)$, then E F is a vertex star in G.
- If G is 3-connected, then the complement of any vertex star in G is a connected hyperplane of $\mathcal{M}(G)$.

*connected: for any bipartition $F = F_1 \cup F_2$, $r(F_1) + r(F_2) \ge r(F) + 1$. **hyperplane: F is closed and has rank r(F) = r(E) - 1.

Thus in a 3-connected graph G, we have

(complements of) vertex stars in G \updownarrow connected hyperplanes of $\mathcal{M}(G)$.

This follows easily from:

- G is 2-connected $\Leftrightarrow \mathcal{M}(G)$ is connected.
- $\mathcal{M}(G)$ is connected $\Rightarrow \operatorname{rank}(\mathcal{M}(G)) = |V(G)| 1$

 \rightarrow the number of vertices is determined by $\mathcal{M}(G)$!

Theorem (Whitney 1933)

If G is 3-connected, then $\mathcal{M}(G)$ uniquely determines G.

In the rest of the talk, I will describe analogues for

- (k, ℓ) -count matroids,
- the C_2^1 -cofactor matroid,
- the *d*-dimensional generic rigidity matroid,
- the very general setting of graph matroid families.

Count matroids

Fix integers k, ℓ with $k \ge 1$ and $\ell \le 2k - 1$.

A graph G is (k, ℓ) -sparse if every subgraph H = (V', E') satisfies $|E'| \le k|V'| - \ell$.

The (k, ℓ) -count matroid $\mathcal{M}_{k,\ell}(G)$ of G is defined by

 $E' \subseteq E$ is independent in $\mathcal{M}_{k,\ell}(G)$ (f)E' induces a (k,ℓ) -sparse subgraph of G. Count matroids include some familiar matroids:

- $\mathcal{M}_{1,1}(G)$ = the graphic matroid of G,
- $\mathcal{M}_{1,0}(G)$ = the bicircular matroid of G,
- $\mathcal{M}_{k,k}(G)$ = the k-fold union of the graphic matroid of G,
- $\mathcal{M}_{2,3}(G)$ = the 2-dimensional generic rigidity matroid of G.

There are efficient algorithms available for computing the rank function of $\mathcal{M}_{k,\ell}(G)$.

Fix integers $k, \ell > 0$ with $\ell \le 2k-1$, and set $c = \max(2k, 2\ell)$.

We have the following generalization of Whitney's theorem for the $(k,\ell)\text{-}\mathrm{count}$ matroid.

Theorem (Jordán-Kaszanitzky 2013, G-Jordán-Király 2024)

If G is (c+1)-connected, then $\mathcal{M}_{k,\ell}(G)$ uniquely determines G.

Fix integers $k, \ell > 0$ with $\ell \le 2k-1$, and set $c = \max(2k, 2\ell)$.

As before, it is enough to identify the vertex stars in $\mathcal{M}_{k,\ell}(G)$.

We show that

- If M_{k,ℓ}(G) is connected and F ⊆ E is a connected k-hyperplane* in M_{k,ℓ}(G), then E − F is a vertex star in G.
- If G is (c + 1)-connected, then M_{k,ℓ}(G) is connected and the complement of any vertex star in G is a connected k-hyperplane of M_{k,ℓ}(G).

*k-hyperplane: F is closed and has rank r(F) = r(E) - k.

Count matroid facts for the proof

Thus in a (c+1)-connected graph G we have

```
(complements of) vertex stars in G

\updownarrow

connected k-hyperplanes of \mathcal{M}_{k,\ell}(G).
```

This follows easily from:

The C_2^1 -cofactor matroid

For a graph G, the C_2^1 -cofactor matroid $C_2^1(G)$ of G is defined as the row matroid of a certain symbolic matrix.

$$v \in V(G) \rightsquigarrow x_v, y_v,$$

$$uv \in E(G) \rightsquigarrow D(u,v) = ((x_u - x_v)^2, (x_u - x_v)(y_u - y_v), (y_u - y_v)^2),$$

$$\begin{array}{cccc} \vdots \\ uv \\ \vdots \end{array} \left(\begin{array}{cccc} u & \cdots & v & \cdots \\ 0 & D(uv) & 0 & -D(uv) & 0 \\ \vdots \end{array} \right)$$

For a graph G, the C_2^1 -cofactor matroid $C_2^1(G)$ of G is defined as the row matroid of a certain symbolic matrix.

Recently, Clinch, Jackson and Tanigawa gave a combinatorial formula for its rank function.

Theorem 2.5. [3, Theorem 6.1] Let G = (V, E) be a simple graph and let r denote the rank function of $\mathcal{C}(G)$. Then for each $E' \subseteq E$, we have

$$r(E') = \min\{|F| + \sum_{X \in \mathcal{X}} (3|X| - 6) - \sum_{h \in H(\mathcal{X})} (\deg_{\mathcal{X}}(h) - 1)\},\$$

where the minimum is taken over all subsets $F \subseteq E'$ and all 4-shellable 2-thin covers \mathcal{X} of (V, E' - F) with sets of size at least five.

Main difference from count matroid case: the number of vertices of G is **not** always determined by $C_2^1(G)$, **even when the latter is connected!**

Main difference from count matroid case: the number of vertices of G is not always determined by $C_2^1(G)$, even when the latter is connected!

Theorem (G-Jordán-Király 2024)

If G is 14-connected, then $\mathcal{C}_2^1(G)$ uniquely determines G.

Idea: we work with higher (vertical) connectivity.

Definition

A matroid $\mathcal{M} = (E, r)$ is **connected** if for any bipartition $E = E_1 \cup E_2$ with $|E_1|, |E_2| \ge 1$, we have

 $r(E_1) + r(E_2) \ge r(E) + 1.$

Definition

A matroid $\mathcal{M} = (E, r)$ is *k*-connected if for any $k_0 \in \{1, \ldots, k-1\}$ and any bipartition $E = E_1 \cup E_2$ with $|E_1|, |E_2| \ge k_0$, we have

$$r(E_1) + r(E_2) \ge r(E) + k_0.$$

Definition

A matroid $\mathcal{M} = (E, r)$ is **vertically** *k*-connected if for any $k_0 \in \{1, \ldots, k-1\}$ and any bipartition $E = E_1 \cup E_2$ with $r(E_1), r(E_2) \ge k_0$, we have

$$r(E_1) + r(E_2) \ge r(E) + k_0.$$

Definition

A matroid $\mathcal{M} = (E, r)$ is **vertically** k-connected if for any $k_0 \in \{1, \ldots, k-1\}$ and any bipartition $E = E_1 \cup E_2$ with $r(E_1), r(E_2) \ge k$, we have

$$r(E_1) + r(E_2) \ge r(E) + k_0.$$

"Vertical" comes from "vertex":

A graph
$$G$$
 is k -connected
 $\$
the graphic matroid $\mathcal{M}(G)$ is vertically k -connected.

Cofactor matroid facts for the proof

We show that in a $14\mathchar`-connected graph <math display="inline">G$ we have

(complements of) vertex stars in
$$G$$

 \updownarrow
vertically 8-connected 3-hyperplanes of $C_2^1(G)$.

This follows from:

- G is 13-connected $\Rightarrow C_2^1(G)$ is vertically 8-connected.
- $C_2^1(G)$ is vertically 8-connected $\Rightarrow \operatorname{rk}(C_2^1(G)) = 3|V| 6.$

 \rightarrow the number of vertices is determined by $\mathcal{C}_2^1(G)$!

The *d*-dimensional generic rigidity matroid

For a graph G, the *d*-dimensional generic rigidity matroid $\mathcal{R}_d(G)$ of G is defined as the row matroid of a certain symbolic matrix.

We have

- $\mathcal{R}_1(G) = \text{graphic matroid of } G$, and
- $\mathcal{R}_2(G) = (2,3)$ -count matroid of G,

but for $d \geq 3$, no combinatorial characterization is known.

\mathcal{R}_d -rigid graphs

Definition

We say that a graph G on at least d vertices is \mathcal{R}_d -rigid if $\operatorname{rank}(\mathcal{R}_d(G)) = d|V(G)| - \binom{d+1}{2}$.

Intuitively, this means that generic embeddings of G into \mathbb{R}^d cannot be deformed continuously while keeping the edge lengths constant.

Main difference from cofactor case: here no combinatorial formula is known for the rank function (for $d \ge 3$)!

Main difference from cofactor case: here no combinatorial formula is known for the rank function (for $d \ge 3$)!

But! A recent breakthrough:

Theorem (Villányi 2025)

If G is d(d+1)-connected, then it is \mathcal{R}_d -rigid.

Connectivity and vertical connectivity

Theorem (Villányi 2025)

If G is d(d+1)-connected, then it is \mathcal{R}_d -rigid.

We can use this result (and very basic properties of $\mathcal{R}_d(G)$) to show that

```
Theorem (G 2024+)
```

- G is sufficiently highly connected ⇒ R_d(G) is highly vertically connected.
- $\mathcal{R}_d(G)$ is sufficiently highly vertically connected \Rightarrow *G* is highly connected, and hence \mathcal{R}_d -rigid.

This implies that for a $d(d+1)^2$ -connected graph G,

(complements of) vertex stars in
$$G$$

 $\$
vertically $d^2(d+1)$ -connected d -hyperplanes of $\mathcal{R}_d(G)$.

Theorem (G 2024+)

If G is $d(d+1)^2\text{-connected},$ then $\mathcal{R}_d(G)$ uniquely determines G.

Graph matroid families

A very general framework

Definition

A graph matroid family (GMF) \mathcal{M} is a family of matroids $\mathcal{M}(G)$ defined on the edge set of each finite graph G satisfying the following properties:

- well-defined: isomorphic graphs get isomorphic matroids;
- *compatible*: taking subgraphs \leftrightarrow restricting the matroid.

E.g., family $\mathcal{M}_{k,\ell}$ of (k,ℓ) -count matroids, family \mathcal{R}_d of d-dimensional generic rigidity matroids...

Other names for (essentially) the same concept: 2-symmetric matroid (Kalai), matroidal family (Simões-Pereira), graph matroid limit (Király et. al)...

Dimensionality

A GMF \mathcal{M} is **trivial** if $\mathcal{M}(G)$ is a free matroid for all G.

Lemma (G 2024+ / folklore?) For every nontrivial GMF \mathcal{M} there exist constants d, t, c such that for every $n \ge t$,

 $\operatorname{rank}(\mathcal{M}(K_n)) = dn - c.$

Dimensionality

A GMF \mathcal{M} is **trivial** if $\mathcal{M}(G)$ is a free matroid for all G.

Lemma (G 2024+ / folklore?)

For every nontrivial GMF ${\mathcal M}$ there exist constants d,t,c such that for every $n\geq t$,

$$\operatorname{rank}(\mathcal{M}(K_n)) = dn - c.$$

Let us call d the **dimensionality** of \mathcal{M} . If d = 0, then \mathcal{M} is **bounded**; otherwise it is **unbounded**.

Dimensionality

A GMF \mathcal{M} is **trivial** if $\mathcal{M}(G)$ is a free matroid for all G.

Lemma (G 2024+ / folklore?)

For every nontrivial GMF ${\mathcal M}$ there exist constants d,t,c such that for every $n\geq t$,

$$\operatorname{rank}(\mathcal{M}(K_n)) = dn - c.$$

Let us call d the **dimensionality** of \mathcal{M} . If d = 0, then \mathcal{M} is **bounded**; otherwise it is **unbounded**.

Definition

A graph G on $n \ge t$ vertices is \mathcal{M} -rigid if

 $\operatorname{rank}(\mathcal{M}(G)) = dn - c.$

Theorem (G 2024+) Let \mathcal{M} be an unbounded GMF. Then $\exists c: \text{ every } c\text{-connected graph } G \text{ is uniquely determined}$ by $\mathcal{M}(G)$ \updownarrow $\exists c': \text{ every } c'\text{-connected graph is } \mathcal{M}\text{-rigid.}$

Proof: copy the proof for the generic rigidity matroid.

This recovers all previous "Whitney-type" results (sometimes with a worse bound on the required connectivity).

The following is a strengthening of Whitney's theorem:

Theorem (Sanders, Sanders 1977)

Let G, H be graphs, and suppose that there is a bijection $f : E(G) \to E(H)$ such that for every circuit C in G, f(C) is a circuit in H. If G is 3-connected, then G and H must be isomoprhic.

Is there a similar strengthening for other matroids / for graph matroid families?

Thank you!

Some references:

- Garamvölgyi, **Rigidity and reconstruction in matroids of highly connected graphs**, 2024. *arXiv:2410.23431*
- Garamvölgyi, Jordán, Király, Count and cofactor matroids of highly connected graphs, *JCTB*, 2024.
- Jordán, Kaszanitzky, **Highly connected rigidity matroids have** unique underlying graphs, *EJC*, 2013.

Given a graph G, the d-dimensional edge split operation replaces an edge uv of G with a new vertex joined to u and v, as well as to d - 1 other vertices of G.

We say that a nontrivial graph matroid family \mathcal{M} with dimensionality d is **extendable** if the d-dimensional edge split operation preserves independence in $\mathcal{M}(G)$, for all G.

Theorem (Villányi 2025)

If G is d(d+1)-connected, then it is \mathcal{R}_d -rigid.

The same proof method can be used to show the following.

Theorem (Villányi 2025 / G 2024+)

If \mathcal{M} is an extendable graph matroid family, then there exists a constant c such that every c-connected graph is \mathcal{M} -rigid.