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Reconstruction from the graphic matroid

Let G be a graph, and let M(G) denote its graphic matroid.

Theorem (Whitney 1933)
If G is 3-connected, then M (G) uniquely determines G.

This means that (in principle) we can reconstruct G from M(G).



Reconstruction from the graphic matroid

Let G be a graph, and let M(G) denote its graphic matroid.

Theorem (Whitney 1933)
If G is 3-connected, then M (G) uniquely determines G.

This means that (in principle) we can reconstruct G from M(G).

In this talk | will

e explain this result, and

e describe generalizations to other families of matroids
associated to graphs.



Identifying vertex stars in the graphic matroid

Let G = (V, E) and M(G) = (E,r).

Key observation

To reconstruct G from M(G), it suffices to identify which
subsets of the ground set correspond to vertex stars.
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Identifying vertex stars in the graphic matroid

Let G = (V, E) and M(G) = (E,r).

Key observation

To reconstruct G from M(G), it suffices to identify which
subsets of the ground set correspond to vertex stars.

e If F C FE is a connected* hyperplane** in M(G), then
E — F'is a vertex star in G.
e If GG is 3-connected, then the complement of any vertex
star in G is a connected hyperplane of M(G).
rondeivial
*connected: for anyvbipartition F=FUF, r(F)+r(F) >r(F)+1.
“*hyperplane: F'is closed and has rank r(F) = r(E) — 1.
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Graphic matroid facts for the proof

Thus in a 3-connected graph GG, we have

(complements of) vertex stars in G

)

connected hyperplanes of M(G).

This follows easily from:

e (G is 2-connected < M (G) is connected.
e M(G) is connected = rank(M(G)) = |V(G)| — 1
— the number of vertices is determined by M(G)!




Theorem (Whitney 1933)

If G is 3-connected, then M(G) uniquely determines G.

In the rest of the talk, | will describe analogues for

e (k,{)-count matroids,
e the C)-cofactor matroid,
e the d-dimensional generic rigidity matroid,

e the very general setting of graph matroid families.



Count matroids



Count matroids

Fix integers k, ¢ with £k > 1 and ¢ < 2k — 1.

A graph G is (k,()-sparse if every subgraph H = (V' E’)
satisfies |E'| < k|V'| — <.

The (k, {)-count matroid M, ,(G) of G is defined by

E’ C E'is independent in M, ,(G)

v

E’ induces a (k, ¢)-sparse subgraph of G.




Some examples of count matroids

Count matroids include some familiar matroids:

e M, 1(G) = the graphic matroid of G,

e M, ((G) = the bicircular matroid of G,

e M, ;(G) = the k-fold union of the graphic matroid of G,
e M, 3(G) = the 2-dimensional generic rigidity matroid of G

There are efficient algorithms available for computing the rank
function of M ,(G).



Reconstruction from count matroids

Fix integers k, ¢ > 0 with £ < 2k—1, and set ¢ = max(2k, 2/(). ]

We have the following generalization of Whitney's theorem for
the (k, ¢)-count matroid.

Theorem (Jorddn-Kaszanitzky 2013, G-Jordan-Kirdly 2024)

If G is (c + 1)-connected, then M, ((G) uniquely deter-
mines G.




Identifying vertex stars in count matroids

Fix integers k, ¢ > 0 with ¢ < 2k—1, and set ¢ = max(2k, 2().

As before, it is enough to identify the vertex stars in M, ,(G).

We show that

o If My ¢(G) is connected and F' C E is a connected
k-hyperplane* in My, ,(G), then E — F'is a vertex star in
G.

e If G is (¢ + 1)-connected, then M ,(G) is connected and
the complement of any vertex star in G is a connected
k-hyperplane of My ¢(G).

*k-hyperplane: F'is closed and has rank r(F) = r(E) — k.



Count matroid facts for the proof

Thus in a (¢ + 1)-connected graph G we have

(complements of) vertex stars in G

;

connected k-hyperplanes of My o(G).

This follows easily from:

Theorem (G-Jordan-Kiraly 2024 + others)

e G is c-connected = M (@) is connected.

e M, (G) is connected = rank(M, ) = k|V(G)| — ¢
— the number of vertices is determined by My, ¢(G)!




The Cj-cofactor matroid




The Cl-cofactor matroid

For a graph G, the C}-cofactor matroid C3(G) of G is
defined as the row matroid of a certain symbolic matrix.

v € V(GQ) ~ zy, Yo,

uv € E(G) A D(U, 7}) = ((Iu - I’U)Qa (Iu - TU)(yu - :‘/’U)a (yu - 3/11)2) )

uI'U 0 D(uww) 0 —D(uwv) 0



The Cl-cofactor matroid

For a graph G, the C3-cofactor matroid C3(G) of G is
defined as the row matroid of a certain symbolic matrix.

Recently, Clinch, Jackson and Tanigawa gave a combinatorial
formula for its rank function.

Theorem 2.5. [3, Theorem 6.1] Let G = (V,E) be a simple graph and let r denote the
rank function of C(G). Then for each E' C E, we have

r(E') =min{|F|+ > (3IX]-6) = > (degx(h) - 1)},

Xex heH (X)

where the minimum is taken over all subsets F C E' and all 4-shellable 2-thin covers X
of (V,E" — F) with sets of size at least five.



Reconstruction from the cofactor matroid

Main difference from count matroid case: the number of
vertices of GG is not always determined by C;(G), even when
the latter is connected!



Reconstruction from the cofactor matroid

Main difference from count matroid case: the number of
vertices of G is not always determined by C;(G), even when

the latter is connected!

Theorem (G-Jordan-Kirdly 2024)

If G is 14-connected, then C3(G) uniquely determines G.

|dea: we work with higher (vertical) connectivity.



Vertical connectivity

A matroid M = (E, r) is connected if for any bipartition
E = E1 U E2 with |E1|, |E2| Z 1, we have

r(Ey) +r(Es) > r(E)+ 1.




Vertical connectivity

A matroid M = (E,r) is k-connected if for any k; €

{1,....k — 1} and any bipartition £ = E; U E, with
|EA|, |Es| > ko, we have

r(Ey) + r(E2) > r(E) + ko.




Vertical connectivity

A matroid M = (E,r) is vertically k-connected if for
any ko € {1,...,k—1} and any bipartition £ = E; U Ej
with r(E1),r(Ey) > ko, we have

Y

r(Ey) + r(E2) > r(E) + ko.




Vertical connectivity

A matroid M = (E,r) is vertically k-connected if for
any ko € {1,...,k—1} and any bipartition £ = E; U Ej
with 7(Ey),r(Ey) > k, we have

r(Ey) + r(E2) > r(E) + k.

“Vertical” comes from “vertex”:

A graph G is k-connected

I

the graphic matroid M(G) is vertically k-connected.




Cofactor matroid facts for the proof

We show that in a 14-connected graph G we have

(complements of) vertex stars in G

O =

vertically 8-connected -

O

-hyperplanes of C3(G).

This follows from:

Theorem (G-Jordan-Kirdly 2024) \

e G is 13-connected = C;(@G) is vertically 8-connected.
e CJ(Q) is vertically 8-connected = rk(C3(G)) = 3|V| — 6.

— the number of vertices is determined by Ci(G)!




The d-dimensional generic

rigidity matroid




The generic rigidity matroid

For a graph G, the d-dimensional generic rigidity matroid
Ra4(G) of G is defined as the row matroid of a certain

symbolic matrix.

We have

e R,(G) = graphic matroid of GG, and
e Ry(G) = (2, 3)-count matroid of G,

but for d > 3, no combinatorial characterization is known.



‘R 4-rigid graphs

Definition

We say that a graph G on at least d vertices is R 4-rigid if

rank(Ra(G)) = d|V(G)| — (d; 1).

Intuitively, this means that generic embeddings of G into R?
cannot be deformed continuously while keeping the edge

~[7

lengths constant.




What do we know about the rigidity matroid?

Main difference from cofactor case: here no combinatorial
formula is known for the rank function (for d > 3)!



What do we know about the rigidity matroid?

Main difference from cofactor case: here no combinatorial
formula is known for the rank function (for d > 3)!

But! A recent breakthrough:

Theorem (Villanyi 2025)

If G is d(d + 1)-connected, then it is R 4-rigid.




Connectivity and vertical connectivity

Theorem (Villanyi 2025)
If G is d(d + 1)-connected, then it is R4-rigid.

We can use this result (and very basic properties of R4(G)) to
show that

Theorem (G 2024+)

e G is sufficiently highly connected = R,4(G) is
highly vertically connected.

e R.(G) is sufficiently highly vertically connected =

G is highly connected, and hence R 4-rigid.




Identifying vertex stars in the rigidity matroid

This implies that for a d(d 4+ 1)*-connected graph G,

(complements of) vertex stars in G

)

vertically d?(d + 1)-connected d-hyperplanes of R4(G).

Theorem (G 2024+)

If G is d(d + 1)-connected, then R;(G) uniquely deter-

mines G.




Graph matroid families




A very general framework

A graph matroid family (GMF) M is a family of matroids
M(G) defined on the edge set of each finite graph G satisfying
the following properties:

o well-defined. isomorphic graphs get isomorphic matroids;

e compatible: taking subgraphs <> restricting the matroid.

E.g., family My, of (k, £)-count matroids, family R, of
d-dimensional generic rigidity matroids...

Other names for (essentially) the same concept: 2-symmetric matroid
(Kalai), matroidal family (Simdes-Pereira), graph matroid limit (Kiraly
et. al)...



Dimensionality

A GMF M is trivial if M(G) is a free matroid for all G.

Lemma (G 2024+ / folklore?)

For every nontrivial GMF M there exist constants d, ¢, c
such that for every n > t,

rank(M(K,,)) = dn — c.




Dimensionality

A GMF M is trivial if M(G) is a free matroid for all G.

Lemma (G 2024+ / folklore?)

For every nontrivial GMF M there exist constants d, ¢, c
such that for every n > t,

rank(M(K,,)) = dn — c.

Let us call d the dimensionality of M. If d =0, then M is
bounded; otherwise it is unbounded.



Dimensionality

A GMF M is trivial if M(G) is a free matroid for all G.

Lemma (G 2024+ / folklore?)

For every nontrivial GMF M there exist constants d, t, ¢
such that for every n > t,

rank(M(K,,)) = dn — c.

Let us call d the dimensionality of M. If d =0, then M is
bounded; otherwise it is unbounded.

Definition
A graph G on n >t vertices is M-rigid if
rank(M(G)) = dn — c.




A general reconstructibility result

Theorem (G 2024+)

Let M be an unbounded GMF. Then

Je: every c-connected graph G is uniquely determined
by M(G)
T

3c’: every ’-connected graph is M-rigid.

Proof: copy the proof for the generic rigidity matroid.

This recovers all previous “"Whitney-type" results (sometimes
with a worse bound on the required connectivity).



An open problem

The following is a strengthening of Whitney's theorem:

Theorem (Sanders, Sanders 1977)
Let G, H be graphs, and suppose that there is a bijection
f: E(G) — E(H) such that for every circuit C' in G,
f(C) is a circuit in H. If G is 3-connected, then G and
H must be isomoprhic.

Is there a similar strengthening for other matroids / for graph
matroid families?
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Extendable graph matroid families

Given a graph G, the d-dimensional edge split operation
replaces an edge uv of G with a new vertex joined to v and v,
as well as to d — 1 other vertices of G.

We say that a nontrivial graph matroid family M with
dimensionality d is extendable if the d-dimensional edge split
operation preserves independence in M(G), for all G.

X



The result of Villanyi for GMFs

Theorem (Villanyi 2025)

If G is d(d + 1)-connected, then it is R -rigid.

The same proof method can be used to show the following.

Theorem (Villdnyi 2025 / G 2024-+)

If M is an extendable graph matroid family, then there
exists a constant ¢ such that every c-connected graph is

M-rigid.
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