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Reconstruction from the graphic matroid

Let G be a graph, and let M(G) denote its graphic matroid.

Theorem (Whitney 1933)

If G is 3-connected, then M(G) uniquely determines G.

This means that (in principle) we can reconstruct G from M(G).

In this talk I will

• explain this result, and

• describe generalizations to other families of matroids

associated to graphs.
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Identifying vertex stars in the graphic matroid

Let G = (V,E) and M(G) = (E, r).

Key observation

To reconstruct G from M(G), it suffices to identify which

subsets of the ground set correspond to vertex stars.
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• If F ⊆ E is a connected∗ hyperplane∗∗ in M(G), then

E − F is a vertex star in G.

• If G is 3-connected, then the complement of any vertex

star in G is a connected hyperplane of M(G).

∗connected: for any bipartition F = F1 ∪ F2, r(F1) + r(F2) ≥ r(F ) + 1.

∗∗hyperplane: F is closed and has rank r(F ) = r(E)− 1.
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Graphic matroid facts for the proof

Thus in a 3-connected graph G, we have

(complements of) vertex stars in G

⇕
connected hyperplanes of M(G).

This follows easily from:

• G is 2-connected ⇔ M(G) is connected.

• M(G) is connected ⇒ rank(M(G)) = |V (G)| − 1

→ the number of vertices is determined by M(G)!



Theorem (Whitney 1933)

If G is 3-connected, then M(G) uniquely determines G.

In the rest of the talk, I will describe analogues for

• (k, ℓ)-count matroids,

• the C1
2 -cofactor matroid,

• the d-dimensional generic rigidity matroid,

• the very general setting of graph matroid families.



Count matroids



Count matroids

Fix integers k, ℓ with k ≥ 1 and ℓ ≤ 2k − 1.

A graph G is (k, ℓ)-sparse if every subgraph H = (V ′, E ′)

satisfies |E ′| ≤ k|V ′| − ℓ.

The (k, ℓ)-count matroid Mk,ℓ(G) of G is defined by

E ′ ⊆ E is independent in Mk,ℓ(G)

⇕
E ′ induces a (k, ℓ)-sparse subgraph of G.



Some examples of count matroids

Count matroids include some familiar matroids:

• M1,1(G) = the graphic matroid of G,

• M1,0(G) = the bicircular matroid of G,

• Mk,k(G) = the k-fold union of the graphic matroid of G,

• M2,3(G) = the 2-dimensional generic rigidity matroid of G.

There are efficient algorithms available for computing the rank

function of Mk,ℓ(G).



Reconstruction from count matroids

Fix integers k, ℓ > 0 with ℓ ≤ 2k−1, and set c = max(2k, 2ℓ).

We have the following generalization of Whitney’s theorem for

the (k, ℓ)-count matroid.

Theorem (Jordán-Kaszanitzky 2013, G-Jordán-Király 2024)

If G is (c+ 1)-connected, then Mk,ℓ(G) uniquely deter-

mines G.



Identifying vertex stars in count matroids

Fix integers k, ℓ > 0 with ℓ ≤ 2k−1, and set c = max(2k, 2ℓ).

As before, it is enough to identify the vertex stars in Mk,ℓ(G).

We show that

• If Mk,ℓ(G) is connected and F ⊆ E is a connected

k-hyperplane∗ in Mk,ℓ(G), then E − F is a vertex star in

G.

• If G is (c+ 1)-connected, then Mk,ℓ(G) is connected and

the complement of any vertex star in G is a connected

k-hyperplane of Mk,ℓ(G).

∗k-hyperplane: F is closed and has rank r(F ) = r(E)− k.



Count matroid facts for the proof

Thus in a (c+ 1)-connected graph G we have

(complements of) vertex stars in G

⇕
connected k-hyperplanes of Mk,ℓ(G).

This follows easily from:

Theorem (G-Jordán-Király 2024 + others)

• G is c-connected ⇒ Mk,ℓ(G) is connected.

• Mk,ℓ(G) is connected ⇒ rank(Mk,ℓ) = k|V (G)| − ℓ

→ the number of vertices is determined by Mk,ℓ(G)!



The C1
2-cofactor matroid



The C1
2-cofactor matroid

For a graph G, the C1
2 -cofactor matroid C1

2(G) of G is

defined as the row matroid of a certain symbolic matrix.

v ∈ V (G)⇝ xv, yv,

uv ∈ E(G)⇝ D(u, v) =
(
(xu − xv)

2, (xu − xv)(yu − yv), (yu − yv)
2
)
,

· · · u · · · v · · ·


...

uv 0 D(uv) 0 −D(uv) 0
...



The C1
2-cofactor matroid

For a graph G, the C1
2 -cofactor matroid C1

2(G) of G is

defined as the row matroid of a certain symbolic matrix.

Recently, Clinch, Jackson and Tanigawa gave a combinatorial

formula for its rank function.



Reconstruction from the cofactor matroid

Main difference from count matroid case: the number of

vertices of G is not always determined by C1
2(G), even when

the latter is connected!

Theorem (G-Jordán-Király 2024)

If G is 14-connected, then C1
2(G) uniquely determines G.

Idea: we work with higher (vertical) connectivity.
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Vertical connectivity

Definition

A matroidM = (E, r) is connected if for any bipartition

E = E1 ∪ E2 with |E1|, |E2| ≥ 1, we have

r(E1) + r(E2) ≥ r(E) + 1.

“Vertical” comes from “vertex”:

A graph G is k-connected

⇕
the graphic matroid M(G) is vertically k-connected.



Vertical connectivity

Definition
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{1, . . . , k − 1} and any bipartition E = E1 ∪ E2 with
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Vertical connectivity

Definition
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Cofactor matroid facts for the proof

We show that in a 14-connected graph G we have

(complements of) vertex stars in G

⇕
vertically 8-connected 3-hyperplanes of C1

2(G).

This follows from:

Theorem (G-Jordán-Király 2024)

• G is 13-connected ⇒ C1
2(G) is vertically 8-connected.

• C1
2(G) is vertically 8-connected ⇒ rk(C1

2(G)) = 3|V | − 6.

→ the number of vertices is determined by C1
2(G)!



The d-dimensional generic

rigidity matroid



The generic rigidity matroid

For a graph G, the d-dimensional generic rigidity matroid

Rd(G) of G is defined as the row matroid of a certain

symbolic matrix.

We have

• R1(G) = graphic matroid of G, and

• R2(G) = (2, 3)-count matroid of G,

but for d ≥ 3, no combinatorial characterization is known.



Rd-rigid graphs

Definition

We say that a graph G on at least d vertices is Rd-rigid if

rank(Rd(G)) = d|V (G)| −
(
d+ 1

2

)
.

Intuitively, this means that generic embeddings of G into Rd

cannot be deformed continuously while keeping the edge

lengths constant.
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What do we know about the rigidity matroid?

Main difference from cofactor case: here no combinatorial

formula is known for the rank function (for d ≥ 3)!

But! A recent breakthrough:

Theorem (Villányi 2025)

If G is d(d+ 1)-connected, then it is Rd-rigid.
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Connectivity and vertical connectivity

Theorem (Villányi 2025)

If G is d(d+ 1)-connected, then it is Rd-rigid.

We can use this result (and very basic properties of Rd(G)) to

show that

Theorem (G 2024+)

• G is sufficiently highly connected ⇒ Rd(G) is

highly vertically connected.

• Rd(G) is sufficiently highly vertically connected ⇒
G is highly connected, and hence Rd-rigid.



Identifying vertex stars in the rigidity matroid

This implies that for a d(d+ 1)2-connected graph G,

(complements of) vertex stars in G

⇕
vertically d2(d+ 1)-connected d-hyperplanes of Rd(G).

Theorem (G 2024+)

If G is d(d+ 1)2-connected, then Rd(G) uniquely deter-

mines G.



Graph matroid families



A very general framework

Definition

A graph matroid family (GMF) M is a family of matroids

M(G) defined on the edge set of each finite graphG satisfying

the following properties:

• well-defined: isomorphic graphs get isomorphic matroids;

• compatible: taking subgraphs ↔ restricting the matroid.

E.g., family Mk,ℓ of (k, ℓ)-count matroids, family Rd of

d-dimensional generic rigidity matroids...

Other names for (essentially) the same concept: 2-symmetric matroid

(Kalai), matroidal family (Simões-Pereira), graph matroid limit (Király

et. al)...



Dimensionality

A GMF M is trivial if M(G) is a free matroid for all G.

Lemma (G 2024+ / folklore?)

For every nontrivial GMF M there exist constants d, t, c

such that for every n ≥ t,

rank(M(Kn)) = dn− c.

Let us call d the dimensionality of M. If d = 0, then M is

bounded; otherwise it is unbounded.

Definition

A graph G on n ≥ t vertices is M-rigid if

rank(M(G)) = dn− c.
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A general reconstructibility result

Theorem (G 2024+)

Let M be an unbounded GMF. Then

∃c: every c-connected graph G is uniquely determined

by M(G)

⇕
∃c′: every c′-connected graph is M-rigid.

Proof: copy the proof for the generic rigidity matroid.

This recovers all previous “Whitney-type” results (sometimes

with a worse bound on the required connectivity).



An open problem

The following is a strengthening of Whitney’s theorem:

Theorem (Sanders, Sanders 1977)

Let G,H be graphs, and suppose that there is a bijection

f : E(G) → E(H) such that for every circuit C in G,

f(C) is a circuit in H. If G is 3-connected, then G and

H must be isomoprhic.

Is there a similar strengthening for other matroids / for graph

matroid families?
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Extendable graph matroid families

Given a graph G, the d-dimensional edge split operation

replaces an edge uv of G with a new vertex joined to u and v,

as well as to d− 1 other vertices of G.

We say that a nontrivial graph matroid family M with

dimensionality d is extendable if the d-dimensional edge split

operation preserves independence in M(G), for all G.
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The result of Villányi for GMFs

Theorem (Villányi 2025)

If G is d(d+ 1)-connected, then it is Rd-rigid.

The same proof method can be used to show the following.

Theorem (Villányi 2025 / G 2024+)

If M is an extendable graph matroid family, then there

exists a constant c such that every c-connected graph is

M-rigid.
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