Dissertation Defense

Department of Operations Research Eötvös Loránd University Dec 17, 2024

Dániel Garamvölgyi

Unique reconstruction problems in rigidity theory

Supervisor: Tibor Jordán Doctoral School: Mathematics

- Quick introduction to combinatorial rigidity theory.
- Summary of main themes and results of the thesis.

Rigidity theory crash course

Let G = (V, E) be a graph.

- A *d*-dimensional realization of *G* is a pair (G, p), where $p: V \to \mathbb{R}^d$.
- The length of an edge $uv \in E$ in (G, p) is ||p(u) p(v)||.

Let G = (V, E) be a graph.

- A *d*-dimensional realization of *G* is a pair (G, p), where $p: V \to \mathbb{R}^d$.
- The length of an edge $uv \in E$ in (G, p) is ||p(u) p(v)||.
- (G, p) is rigid if it has no continuous edge length preserving deformations.
- (G, p) is **globally rigid** if the only d-dimensional realizations of G with the same edge lengths as (G, p) are the translations, rotations, and reflections of (G, p).

(a) Not rigid

(b) Not globally rigid

(c) Globally rigid

Graph rigidity

Theorem (Asimow-Roth + Gortler-Healy-Thurston)

- For any graph G, either all generic d-dimensional realizations of G are rigid, or none of them are.
- For any graph G, either all generic d-dimensional realizations of G are globally rigid, or none of them are.

Definition

A graph is *d*-rigid if its generic *d*-dimensional realizations are rigid.

A graph is **globally** *d***-rigid** if its generic *d*-dimensional realizations are globally rigid.

*A realization is generic if the coordinates appearing in it form an algebraically independent set (over \mathbb{Q}).

Let K_V be the complete graph on vertex set V. The family

$$\mathcal{S} = \left\{ E \subseteq E(K_V) \colon G = (V, E) \text{ is a } d\text{-rigid graph} \right\}$$

is the family of spanning sets of a matroid $\mathcal{R}_d(K_V)$.

Definition

The (*d*-dimensional generic) rigidity matroid of the graph G = (V, E) is the restriction of $\mathcal{R}_d(K_V)$ to E. It is denoted by $\mathcal{R}_d(G)$.

Rigidity theory has

- real-world applications (allegedly),
- applications to graph theory...

(Motto: "d-rigidity is a matroidal version of d-connectivity")

• ... and to many other areas: circle packings, combinatorial geometry, low-rank matrix/tensor completion, etc.

The main themes/topics of the thesis are:

- combinatorial aspects of global rigidity,
- a theory of unlabeled reconstructibility,
- a toolbox for rigidity theory based on algebraic geometry.

Combinatorics of global rigidity

Rigidity vs global rigidity

Recall:

Theorem (Asimow-Roth 1978)

If any generic d-dimensional realization of G is rigid, then all of them are. (In this case, G is d-rigid.)

Theorem (Gortler-Healy-Thurston 2010)

If any generic d-dimensional realization of G is globally rigid, then all of them are. (In this case, G is globally d-rigid.)

Rigidity vs global rigidity

Recall:

Theorem (Asimow-Roth 1978)

If any generic d-dimensional realization of G is rigid, then all of them are. (In this case, G is d-rigid.)

Theorem (Gortler-Healy-Thurston 2010)

If any generic d-dimensional realization of G is globally rigid, then all of them are. (In this case, G is globally d-rigid.)

The Asimow-Roth result is easy and robust.

The Gortler-Healy-Thurston result is hard and (in a sense) a fluke.

A graph G = (V, E) is **minimally** *d*-rigid if it is *d*-rigid but G - e is not, for every edge $e \in E$.

Minimally *d*-rigid graphs on vertex set V correspond to the bases of the rigidity matroid $\mathcal{R}_d(K_V)$ of the complete graph on V.

In particular, if G=(V,E) is a minimally $d\mbox{-rigid}$ graph with $|V|\geq d+1,$ then

- $|E| = d|V| {d+1 \choose 2}$, and
- Any set $X \subseteq V$ of vertices with $|X| \ge d+1$ induces at most $d|X| \binom{d+1}{2}$ edges.

A graph G = (V, E) is minimally globally *d*-rigid if it is globally *d*-rigid but G - e is not, for every edge $e \in E$.

Conjecture (Jordán 2017)

If G=(V,E) is a minimally globally $d\mbox{-rigid}$ graph with $|V|\geq d+2,$ then

$$|E| \le (d+1)|V| - \binom{d+2}{2}.$$

Minimally globally rigid graphs

Conjecture (Jordán 2017)

If G=(V,E) is a minimally globally $d\mbox{-rigid}$ graph with $|V|\geq d+2,$ then

$$|E| \le (d+1)|V| - \binom{d+2}{2}$$

Minimally globally rigid graphs

Theorem (G-Jordán 2023)

If G=(V,E) is a minimally globally d-rigid graph with $|V|\geq d+1,$ then

$$|E| \le (d+1)|V| - \binom{d+2}{2}.$$

Equality holds if and only if $G = K_{d+2}$.

Minimally globally rigid graphs

Theorem (G-Jordán 2023)

If G=(V,E) is a minimally globally d-rigid graph with $|V|\geq d+1,$ then

$$|E| \le (d+1)|V| - \binom{d+2}{2}.$$

Equality holds if and only if $G = K_{d+2}$.

Theorem (G 2024+)

If G = (V, E) is a minimally globally *d*-rigid graph, then any set $X \subseteq V$ of vertices with $|X| \ge d+2$ induces at most $(d+1)|X| - \binom{d+2}{2}$ edges.

The rigidity matroid of globally rigid graphs

Let G be a graph. Recall: $\mathcal{R}_d(G)$ denotes its rigidity matroid.

The rigidity matroid of globally rigid graphs

Let G be a graph. Recall: $\mathcal{R}_d(G)$ denotes its rigidity matroid.

Theorem (Hendrickson 1992)

If G is globally d-rigid, then $\mathcal{R}_d(G)$ is bridgeless.

The rigidity matroid of globally rigid graphs

Let G be a graph. Recall: $\mathcal{R}_d(G)$ denotes its rigidity matroid.

Theorem (Hendrickson 1992)

If G is globally d-rigid, then $\mathcal{R}_d(G)$ is bridgeless.

Theorem (G-Gortler-Jordán 2022)

If G is globally d-rigid, then $\mathcal{R}_d(G)$ is connected.

Unlabeled reconstruction

An interesting example

An interesting example

An interesting example

An edge bijection is a bijection $\psi: E(G) \to E(H)$ between the edge sets of two graphs.

Definition

Let (G, p) and (H, q) be realizations and let $\psi : E(G) \to E(H)$ be an edge bijection. We say that (G, p) and (H, q) are **length**equivalent (under ψ) if for every edge $e \in E(G)$, the length of e in (G, p) is equal to the length of $\psi(e)$ in (H, q). An edge bijection is a bijection $\psi: E(G) \to E(H)$ between the edge sets of two graphs.

Definition

Let (G, p) and (H, q) be realizations and let $\psi : E(G) \to E(H)$ be an edge bijection. We say that (G, p) and (H, q) are **length**equivalent (under ψ) if for every edge $e \in E(G)$, the length of e in (G, p) is equal to the length of $\psi(e)$ in (H, q).

An edge bijection $\psi: E(G) \to E(H)$ is induced by a graph isomorphism if it is of the form $\psi(uv) = \varphi(u)\varphi(v)$ for some graph isomorphism $\varphi: V(G) \to V(H)$.

Let K be the complete graph on n vertices, where $n \ge d+2$.

Theorem (Boutin-Kemper 2004)

Let (K, p) and (K, q) be *d*-dimensional realizations that are lengthequivalent under some edge bijection $\psi : E(K) \to E(K)$. If (K, p) is generic, then ψ is induced by an automorphism of K. Let G be a graph on n vertices, where $n \ge d+2$. Let H be another graph.

Theorem (Gortler-Theran-Thurston 2019)

Let (G, p) and (H, q) be d-dimensional realizations that are lengthequivalent under some edge bijection $\psi : E(G) \to E(H)$. If G is globally d-rigid, (G, p) is generic, and |V(G)| = |V(H)|, then ψ is induced by a graph isomorphism $\varphi : G \to H$. Let G be a graph on n vertices, where $n \ge d+2$. Let H be another graph.

Theorem (Gortler-Theran-Thurston 2019)

Let (G, p) and (H, q) be d-dimensional realizations that are lengthequivalent under some edge bijection $\psi : E(G) \to E(H)$. If G is globally d-rigid, (G, p) is generic, and |V(G)| = |V(H)|, then ψ is induced by a graph isomorphism $\varphi : G \to H$. Let G be a graph on n vertices, where $n \ge d+2$. Let H be another graph.

Theorem (G-Gortler-Jordán 2022)

Let (G, p) and (H, q) be d-dimensional realizations that are lengthequivalent under some edge bijection $\psi : E(G) \to E(H)$. If G is globally d-rigid and (G, p) and (H, q) are both generic, then ψ is induced by a graph isomorphism $\varphi : G \to H$. Algebraic geometry toolbox

The measurement map of G is the function $m_{d,G}$ mapping each d-dimensional realization (G, p) to

$$m_{d,G}(p) = (||p(u) - p(v)||^2)_{uv \in E}$$

This is a polynomial map \rightarrow we can use algebraic geometry to study its properties.

The *d*-dimensional **measurement variety** of G, denoted by $M_{d,G}$, is the smallest complex affine variety that contains the image of the measurement map $m_{d,G}$.

The geometry of $M_{d,G}$ encodes various rigidity-theoretic properties of G.

The *d*-dimensional **measurement variety** of G, denoted by $M_{d,G}$, is the smallest complex affine variety that contains the image of the measurement map $m_{d,G}$.

The geometry of $M_{d,G}$ encodes various rigidity-theoretic properties of G. For example:

Lemma (G-Gortler-Jordán 2022)

The rigidity matroid $\mathcal{R}_d(G)$ is connected if and only if $M_{d,G}$ cannot be written as $M_{d,G} = M_{d,G_1} \times M_{d,G_2}$ for any proper subgraphs G_1, G_2 of G.

It turns out that the measurement map $m_{d,G}$ gives an algebraic representation of the rigidity matroid $\mathcal{R}_d(G)$:

A set of edges is independent in $\mathcal{R}_d(G)$ $\label{eq:responding}$ The corresponding coordinate functions of $m_{d,G}$ are algebraically independent

It turns out that the measurement map $m_{d,G}$ gives an algebraic representation of the rigidity matroid $\mathcal{R}_d(G)$.

Similarly, the measurement variety can be seen as a **geometric representation** of the rigidity matroid:

```
A set of edges is independent in \mathcal{R}_d(G)

\

The corresponding coordinate projection of M_{d,G} is dominant

("essentially surjective").
```

Theorem (G 2024+)

Let $A_1, \ldots, A_k \in \mathbb{R}^{m \times n}$, and let r be a positive integer. If $\operatorname{rank}(\sum_{i=1}^k A_i) \ge r$, then there is a subset $I \subseteq \{1, \ldots, k\}$ with $|I| \le r$ such that $\operatorname{rank}(\sum_{i \in I} A_i) \ge r$.

This appears to be a new result. (Any applications?)

Core material:

- D. Garamvölgyi, S.J. Gortler, T. Jordán, Globally rigid graphs are fully reconstructible, *Forum of Mathematics, Sigma*, 2022.
- D. Garamvölgyi, T. Jordán, Graph reconstruction from unlabeled edge lengths, *Discrete & Computational Geometry*, 2021.
- D. Garamvölgyi, T. Jordán, Minimally globally rigid graphs, *European Journal of Combinatorics*, 2023.

Bits and pieces from:

- D. Garamvölgyi, Stress-linked pairs of vertices and the generic stress matroid, 2023. arXiv:2308.16851
- D. Garamvölgyi, T. Jordán, Global rigidity of unit ball graphs, *SIAM Journal on Discrete Mathematics*, 2020.
- D. Garamvölgyi, T. Jordán, Partial reflections and globally linked pairs in rigid graphs, *SIAM Journal on Discrete Mathematics*, 2024.