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The plan

• Quick introduction to combinatorial rigidity theory.

• Summary of main themes and results of the thesis.



Rigidity theory crash course



Rigid and globally rigid realizations

Let G = (V,E) be a graph.

• A d-dimensional realization of G is a pair (G, p), where

p : V → Rd.

• The length of an edge uv ∈ E in (G, p) is ∥p(u)− p(v)∥.

• (G, p) is rigid if it has no continuous edge length preserving

deformations.

• (G, p) is globally rigid if the only d-dimensional realizations

of G with the same edge lengths as (G, p) are the

translations, rotations, and reflections of (G, p).
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Examples

(a) Not rigid (b) Not globally rigid (c) Globally rigid



Graph rigidity

Theorem (Asimow-Roth + Gortler-Healy-Thurston)

• For any graph G, either all generic d-dimensional realizations

of G are rigid, or none of them are.

• For any graph G, either all generic d-dimensional realizations

of G are globally rigid, or none of them are.

Definition

A graph is d-rigid if its generic d-dimensional realizations are rigid.

A graph is globally d-rigid if its generic d-dimensional realizations

are globally rigid.

∗A realization is generic if the coordinates appearing in it form an algebraically

independent set (over Q).



The rigidity matroid

Let KV be the complete graph on vertex set V .

The family

S =
{
E ⊆ E(KV ) : G = (V,E) is a d-rigid graph

}
is the family of spanning sets of a matroid Rd(KV ).

Definition

The (d-dimensional generic) rigidity matroid of the graph

G = (V,E) is the restriction of Rd(KV ) to E. It is denoted

by Rd(G).



Why study rigidity?

Rigidity theory has

• real-world applications (allegedly),

• applications to graph theory. . .

(Motto: “d-rigidity is a matroidal version of d-connectivity”)

• . . . and to many other areas: circle packings, combinatorial

geometry, low-rank matrix/tensor completion, etc.



Main themes of the thesis

The main themes/topics of the thesis are:

• combinatorial aspects of global rigidity,

• a theory of unlabeled reconstructibility,

• a toolbox for rigidity theory based on algebraic geometry.



Combinatorics of global rigidity



Rigidity vs global rigidity

Recall:

Theorem (Asimow-Roth 1978)

If any generic d-dimensional realization of G is rigid, then all of

them are. (In this case, G is d-rigid.)

Theorem (Gortler-Healy-Thurston 2010)

If any generic d-dimensional realization of G is globally rigid,

then all of them are. (In this case, G is globally d-rigid.)

The Asimow-Roth result is easy and robust.

The Gortler-Healy-Thurston result is hard and (in a sense) a fluke.
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Minimally rigid graphs

Definition

A graph G = (V,E) is minimally d-rigid if it is d-rigid but

G− e is not, for every edge e ∈ E.

Minimally d-rigid graphs on vertex set V correspond to the bases

of the rigidity matroid Rd(KV ) of the complete graph on V .

In particular, if G = (V,E) is a minimally d-rigid graph with

|V | ≥ d+ 1, then

• |E| = d|V | −
(
d+1
2

)
, and

• Any set X ⊆ V of vertices with |X| ≥ d+ 1 induces at most

d|X| −
(
d+1
2

)
edges.



Minimally globally rigid graphs

Definition

A graph G = (V,E) is minimally globally d-rigid if it is

globally d-rigid but G− e is not, for every edge e ∈ E.

Conjecture (Jordán 2017)

If G = (V,E) is a minimally globally d-rigid graph with |V | ≥
d+ 2, then

|E| ≤ (d+ 1)|V | −
(
d+ 2

2

)
.
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Minimally globally rigid graphs

Theorem (G-Jordán 2023)

If G = (V,E) is a minimally globally d-rigid graph with |V | ≥
d+ 1, then

|E| ≤ (d+ 1)|V | −
(
d+ 2

2

)
.

Equality holds if and only if G = Kd+2.

Theorem (G 2024+)

If G = (V,E) is a minimally globally d-rigid graph, then any

set X ⊆ V of vertices with |X| ≥ d + 2 induces at most

(d+ 1)|X| −
(
d+2
2

)
edges.
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The rigidity matroid of globally rigid graphs

Let G be a graph. Recall: Rd(G) denotes its rigidity matroid.

Observation

If G is globally d-rigid, then it is d-rigid.

(⇔ Rd(G) has maximum rank)

Theorem (Hendrickson 1992)

If G is globally d-rigid, then Rd(G) is bridgeless.

Theorem (G-Gortler-Jordán 2022)

If G is globally d-rigid, then Rd(G) is connected.
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Unlabeled reconstruction



An interesting example
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Comparing measurements

An edge bijection is a bijection ψ : E(G) → E(H) between the

edge sets of two graphs.

Definition

Let (G, p) and (H, q) be realizations and let ψ : E(G) → E(H)

be an edge bijection. We say that (G, p) and (H, q) are length-

equivalent (under ψ) if for every edge e ∈ E(G), the length of

e in (G, p) is equal to the length of ψ(e) in (H, q).

An edge bijection ψ : E(G) → E(H) is induced by a graph

isomorphism if it is of the form ψ(uv) = φ(u)φ(v) for some graph

isomorphism φ : V (G) → V (H).
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Results on unlabeled reconstruction

Let K be the complete graph on n vertices, where n ≥ d+ 2.

Theorem (Boutin-Kemper 2004)

Let (K, p) and (K, q) be d-dimensional realizations that are length-

equivalent under some edge bijection ψ : E(K) → E(K).

If (K, p) is generic, then ψ is induced by an automorphism of K.



Results on unlabeled reconstruction

Let G be a graph on n vertices, where n ≥ d+ 2.

Let H be another graph.

Theorem (Gortler-Theran-Thurston 2019)

Let (G, p) and (H, q) be d-dimensional realizations that are length-

equivalent under some edge bijection ψ : E(G) → E(H).

If G is globally d-rigid, (G, p) is generic, and |V (G)| = |V (H)|,
then ψ is induced by a graph isomorphism φ : G→ H.
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Results on unlabeled reconstruction

Let G be a graph on n vertices, where n ≥ d+ 2.

Let H be another graph.

Theorem (G-Gortler-Jordán 2022)

Let (G, p) and (H, q) be d-dimensional realizations that are length-

equivalent under some edge bijection ψ : E(G) → E(H).

If G is globally d-rigid and (G, p) and (H, q) are both generic, then

ψ is induced by a graph isomorphism φ : G→ H.



Algebraic geometry toolbox



The measurement map

Definition

The measurement map of G is the function md,G mapping

each d-dimensional realization (G, p) to

md,G(p) =
(
∥p(u)− p(v)∥2

)
uv∈E

This is a polynomial map → we can use algebraic geometry to

study its properties.



The measurement variety

Definition

The d-dimensional measurement variety of G, denoted by

Md,G, is the smallest complex affine variety that contains the

image of the measurement map md,G.

The geometry of Md,G encodes various rigidity-theoretic properties

of G.

For example:

Lemma (G-Gortler-Jordán 2022)

The rigidity matroid Rd(G) is connected if and only if Md,G

cannot be written as Md,G =Md,G1 ×Md,G2 for any proper

subgraphs G1, G2 of G.
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Algebraic matroids

It turns out that the measurement map md,G gives an algebraic

representation of the rigidity matroid Rd(G):

A set of edges is independent in Rd(G)

⇕
The corresponding coordinate functions of md,G are algebraically

independent

Similarly, the measurement variety can be seen as a geometric

representation of the rigidity matroid:



Algebraic matroids

It turns out that the measurement map md,G gives an algebraic

representation of the rigidity matroid Rd(G).

Similarly, the measurement variety can be seen as a geometric

representation of the rigidity matroid:

A set of edges is independent in Rd(G)

⇕
The corresponding coordinate projection of Md,G is dominant

(“essentially surjective”).



A bonus result

Theorem (G 2024+)

Let A1, . . . , Ak ∈ Rm×n, and let r be a positive integer.

If rank(
∑k

i=1Ai) ≥ r, then there is a subset I ⊆ {1, . . . , k}
with |I| ≤ r such that rank(

∑
i∈I Ai) ≥ r.

This appears to be a new result. (Any applications?)
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