NII Shonan Meeting No. 211 Shonan Village Center, Japan, September 4, 2024

Dániel Garamvölgyi

Stress-linked pairs of vertices

Eötvös Loránd University and Alfréd Rényi Institute, Budapest, Hungary

- Basic definitions: (global) rigidity, (globally) linked vertex pairs
- A stress-based sufficient condition for globally linked vertex pairs.

The basics

• A *d*-dimensional framework is a pair (G, p), where $p: V \to \mathbb{R}^d$.

• A *d*-dimensional framework is a pair (G, p), where $p \in (\mathbb{R}^d)^V$.

- A *d*-dimensional framework is a pair (G, p), where $p \in (\mathbb{R}^d)^V$.
- A *d*-framework is generic if ...

- A *d*-dimensional framework is a pair (G, p), where $p \in (\mathbb{R}^d)^V$.
- A *d*-framework is generic if ...
- Two d-frameworks (G, p) and (G, q) are equivalent if

$$||p(u) - p(v)|| = ||q(u) - q(v)||, \quad \forall uv \in E.$$

 $\mathsf{Eqv}(G,p) = \{q \in (\mathbb{R}^d)^V : (G,p) \text{ and } (G,q) \text{ are equivalent} \}$

- A *d*-dimensional framework is a pair (G, p), where $p \in (\mathbb{R}^d)^V$.
- A *d*-framework is generic if ...
- Two d-frameworks (G, p) and (G, q) are equivalent if

$$||p(u) - p(v)|| = ||q(u) - q(v)||, \quad \forall uv \in E.$$

 $\mathsf{Eqv}(G,p) = \{q \in (\mathbb{R}^d)^V : (G,p) \text{ and } (G,q) \text{ are equivalent} \}$

• Two *d*-frameworks (G, p) and (G, q) are congruent if $\|p(u) - p(v)\| = \|q(u) - q(v)\|, \quad \forall u, v \in V.$

$$\mathsf{Eqv}(G,p) = \{q \in (\mathbb{R}^d)^V : (G,p) \text{ and } (G,q) \text{ are equivalent} \}$$

Definition

A $d\text{-framework}\;(G,p)$ is rigid if $\mathsf{Eqv}(G,p)$ consists of finitely many congruence classes.

Definition

A graph G is d-rigid if every generic d-framework (G, p) is rigid.

 $\mathsf{Eqv}(G,p) = \{q \in (\mathbb{R}^d)^V : (G,p) \text{ and } (G,q) \text{ are equivalent} \}$

Definition

A *d*-framework (G, p) is globally rigid if Eqv(G, p) consists of a single congruence class.

Definition

A graph G is globally d-rigid if every generic d-framework (G, p) is globally rigid.

Rigidity is **hard**

(Combinatorial characterization known for d = 1, 2, but long-standing open problem for $d \ge 3$.)

Rigidity is **hard**

(Combinatorial characterization known for d = 1, 2, but long-standing open problem for $d \ge 3$.)

... and so is global rigidity.

(Combinatorial characterization known for d = 1, 2, but long-standing open problem for $d \ge 3$.)

But also, rigidity is **easy**!

Matroid structure: if we can solve rigidity, we can automatically solve many related problems.

But also, rigidity is **easy**!

Matroid structure: if we can solve rigidity, we can automatically solve many related problems.

... global rigidity is still hard.

No matroid structure, many related algorithmic problems are NP-hard.

Definition

A vertex pair $\{u,v\}$ is d-linked in G if for every generic d- framework (G,p),

$$\left\{ \left\| q(u) - q(v) \right\| : q \in \mathsf{Eqv}(G,p) \right\}$$

is finite.

Definition

A vertex pair $\{u, v\}$ is *d*-linked in *G* if for every generic *d*-framework (G, p), $\{ \|q(u) - q(v)\| : q \in Eqv(G, p) \}$

- G is d-rigid \Leftrightarrow every pair of vertices is d-linked in G.
- We can replace every with some and get the same notion.
- Matroid structure: deciding *d*-rigidity is polynomially equivalent to deciding *d*-linkedness.

Definition (Jackson, Jordán, Szabadka 2006)

A vertex pair $\{u, v\}$ is globally *d*-linked in *G* if for every generic *d*-framework (G, p),

$$\big\{\,\|q(u)-q(v)\|:q\in\mathsf{Eqv}(G,p)\big\}$$

has size one.

Definition (Jackson, Jordán, Szabadka 2006)

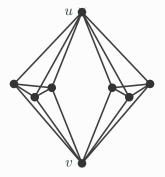
A vertex pair $\{u, v\}$ is globally *d*-linked in *G* if for every generic *d*-framework (G, p),

$$\left\{\,\|q(u)-q(v)\|:q\in \mathsf{Eqv}(G,p)\right\}$$

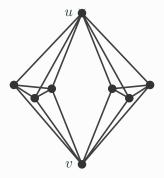
has size one.

- G is globally d-rigid \Leftrightarrow every pair of vertices is globally d-linked in G.
- If we replace every with some, we get a different notion!
- Deciding global d-linkedness is open even in the d = 2 case!

Short quiz



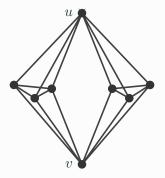
Is $\{u, v\}$ 3-linked in B?



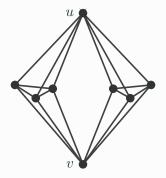
Is $\{u, v\}$ 3-linked in B?

Yes.

(It is contained in a 3-rigid subgraph.)



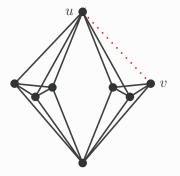
Is $\{u, v\}$ globally 3-linked in B?



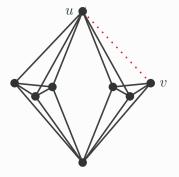
Is $\{u, v\}$ globally 3-linked in B?

Yes.

(Not entirely trivial!)

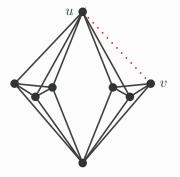


Is $\{u, v\}$ 3-linked in B - uv?

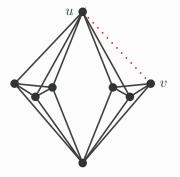


Is $\{u, v\}$ 3-linked in B - uv?

Yes. (*B* is an " \mathcal{R}_3 -circuit".)

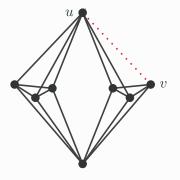


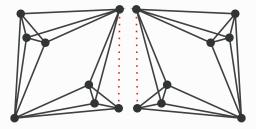
Is $\{u, v\}$ globally 3-linked in B - uv?

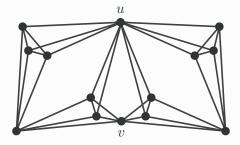


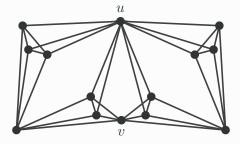
Is $\{u, v\}$ globally 3-linked in B - uv?

... probably not?

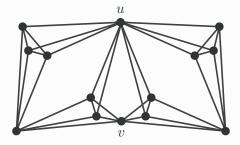








Is $\{u, v\}$ globally 3-linked in B'?



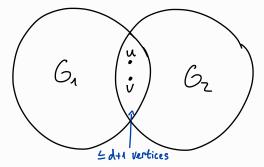
Is $\{u, v\}$ globally 3-linked in B'?

It is a secret. (Maybe we will find out ...)

Gluing conjecture

Conjecture (G, Jordán 2024+)

Let G be the union of the graphs $G_1 = (V_1, E_1), i \in \{1, 2\}$ with $|V_1 \cap V_2| \leq d + 1$. Let $u, v \in V_1 \cap V_2$. If $\{u, v\}$ is d-linked in both G_1 and G_2 , then $\{u, v\}$ is globally d-linked in G.



Stress-linked vertex pairs

Definition

A vector $\omega = (\omega_{uv})_{uv \in E}$ is a stress of (G, p) if it satisfies the following system of equilibrium conditions:

$$\sum_{u:uv \in E} \omega_{uv}(p(u) - p(v)) = 0, \qquad \forall v \in V.$$

Theorem (Connelly 2005 (and probably much earlier))

If (G,p) is generic and $q\in \mathsf{Eqv}(G,p),$ then every stress of (G,p) is also a stress of (G,q).

Theorem (Connelly 2005 (and probably much earlier))

If (G,p) is generic and $q \in Eqv(G,p)$, then every stress of (G,p) is also a stress of (G,q).

Let us define

 $K(G,p) = \{q \in (\mathbb{R}^d)^V : \text{every stress of } (G,p) \text{ is a stress of } (G,q)\}$

Then Connelly's theorem says:

If (G, p) is generic, then $Eqv(G, p) \subseteq K(G, p)$.

$$K(G,p) = \{q \in (\mathbb{R}^d)^V : \text{every stress of } (G,p) \text{ is a stress of } (G,q) \}$$

Easy observation:

$$K(G+uv,p) \subseteq K(G,p), \quad \forall u,v \in V.$$

$$K(G,p) = \{q \in (\mathbb{R}^d)^V : \text{every stress of } (G,p) \text{ is a stress of } (G,q) \}$$

Easy observation:

$$K(G+uv,p) \subseteq K(G,p), \quad \forall u,v \in V.$$

Theorem (Gortler, Healy, Thurston 2010)

A graph G = (V, E) on at least d + 2 vertices is globally d-rigid if and only if

$$K(G,p) = K(K_V,p)$$

for every generic *d*-framework (G, p).

$$K(G,p) = \{q \in (\mathbb{R}^d)^V : \text{every stress of } (G,p) \text{ is a stress of } (G,q) \}$$

Definition (G 2024+)

A vertex pair $\{u, v\}$ is *d*-stress-linked in *G* if

- $\{u, v\}$ is *d*-linked in *G*, and
- K(G + uv, p) = K(G, p) for every generic (G, p).

Stress-linked vs. globally linked

Definition (G 2024+)

A vertex pair $\{u, v\}$ is *d*-stress-linked in G if

- $\{u, v\}$ is *d*-linked in *G*, and
- K(G + uv, p) = K(G, p) for every generic (G, p).

Stress-linked vs. globally linked

Definition (G 2024+)

A vertex pair $\{u, v\}$ is *d*-stress-linked in G if for every generic *d*-framework (G, p),

• $\left\{ \, \|q(u)-q(v)\| : q \in \mathsf{Eqv}(G,p) \right\}$ is finite, and

•
$$K(G+uv,p) = K(G,p).$$

Definition (G 2024+)

A vertex pair $\{u, v\}$ is *d*-stress-linked in G if for every generic *d*-framework (G, p),

• $\left\{ \, \|q(u)-q(v)\| : q \in \mathsf{Eqv}(G,p) \right\}$ is finite, and

•
$$K(G+uv,p) = K(G,p).$$

We can replace every with some and get the same notion.

Definition (G 2024+)

A vertex pair $\{u, v\}$ is *d*-stress-linked in G if for every generic *d*-framework (G, p),

• $\left\{ \, \|q(u)-q(v)\| : q \in \mathsf{Eqv}(G,p) \right\}$ is finite, and

•
$$K(G+uv,p) = K(G,p).$$

We can replace every with some and get the same notion.

Definition (Jackson, Jordán, Szabadka 2006)

A vertex pair $\{u, v\}$ is globally *d*-linked in *G* if for every generic *d*-framework (G, p),

$$\big\{\,\|q(u)-q(v)\|:q\in \mathsf{Eqv}(G,p)\big\}$$

has size one.

Theorem (G 2024+)

If $\{u, v\}$ is *d*-stress-linked in *G*, then it is globally *d*-linked in *G*.

Proof idea:

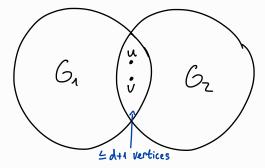
• Linearity of the generic contact locus: The image of K(G + uv, p) under the mapping $q \mapsto \left(\left\| q(u') - q(v') \right\|^2 \right)_{u'v' \in E(G+uv)}$

is "almost" a linear space.

• If $\{u, v\}$ is not globally *d*-linked in *G*, then we can use the previous point, Connelly's theorem, and the assumption that K(G, p) = K(G + uv, p) to contradict *d*-linkedness.

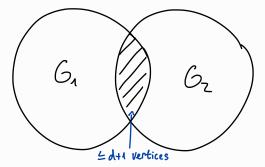
Conjecture (G, Jordán 2024+)

Let G be the union of the graphs $G_1 = (V_1, E_1), i \in \{1, 2\}$ with $|V_1 \cap V_2| \leq d + 1$. Let $u, v \in V_1 \cap V_2$. If $\{u, v\}$ is d-linked in both G_1 and G_2 , then $\{u, v\}$ is globally d-linked in G.

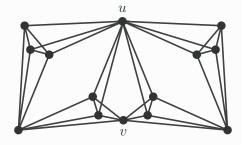


Theorem (G 2024+)

Let G be the union of the graphs $G_1 = (V_1, E_1), i \in \{1, 2\}$ with $|V_1 \cap V_2| \le d + 1$. If $\{u, v\}$ is d-linked in both G_1 and G_2 for every $u, v \in V_1 \cap V_2$, then $\{u, v\}$ is d-stress-linked in G for every $u, v \in V_1 \cap V_2$.

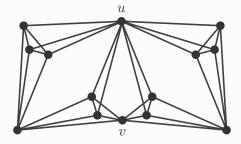


2-sum of double bananas, revisited



Is $\{u, v\}$ globally 3-linked in B'?

2-sum of double bananas, revisited



Is $\{u, v\}$ globally 3-linked in B'?

Yes!

3-linked on both sides \Rightarrow 3-stress-linked in $B' \Rightarrow$ globally 3-linked in B'

Some other applications of stress-linked vertex pairs:

- Sparsity result for minimally globally *d*-rigid graphs.
- A gluing result for redundantly *d*-rigid graph (answering a conjecture of Connelly).
- A gluing result for \mathcal{R}_d -circuits (answering a conjecture of Grasegger, Guler, Jackson and Nixon).

Main tools for studying stress-linked vertex pairs:

- Extension of rigidity theory to complex space.
- Duality theory of projective varieties.
- Viewpoint of algebraic matroids.

Conjecture (G 2024+)

A pair of vertices $\{u, v\}$ is globally *d*-linked in *G* if and only if it is *d*-stress-linked in *G*.

Conjecture (G 2024+)

A pair of vertices $\{u, v\}$ is globally *d*-linked in *G* if and only if it is *d*-stress-linked in *G*.

Preprint: D. Garamvölgyi, Stress-linked pairs of vertices and the generic stress matroid, 2023. arXiv:2308.16851

See also: D. Garamvölgyi, T. Jordán, Partial reflections and globally linked pairs in rigid graphs, should appear soon in *SIDMA*.