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This talk

Conjecture. (Jordán, ∼2015)
If G is a minimally globally rigid graph in Rd on n ≥ d+ 2

vertices and m edges, then m ≤ n(d+ 1)−
(
d+2
2

)
.

In this talk:

• What does this mean?
• Why do we care?
• How did we prove it?
• What is (I think) the “real” reason that it is true?
• Some very recent results.

1



This talk

Theorem. (G., Jordán, 2022)
If G is a minimally globally rigid graph in Rd on n ≥ d+ 2

vertices and m edges, then m ≤ n(d+ 1)−
(
d+2
2

)
.

In this talk:

• What does this mean?
• Why do we care?
• How did we prove it?
• What is (I think) the “real” reason that it is true?
• Some very recent results.
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Definitions – realizations

What does “minimally globally rigid” mean?

Let us fix d ≥ 1 and a graph G. A framework, or a realization of
G is a pair (G, p) with p : V (G) → Rd. Two realizations (G, p)

and (G, q) are equivalent if

||p(u)− p(v)|| = ||q(u)− q(v)|| ∀uv ∈ E(G).

They are congruent if

||p(u)− p(v)|| = ||q(u)− q(v)|| ∀u, v ∈ V (G).

A realization (G, p) is generic if the coordinates of
p(v), v ∈ V (G) are algebraically independent over Q.
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Definitions – rigidity

The framework (G, p) is rigid if it cannot be deformed
continuously and globally rigid if every equivalent realization
(G, q) is congruent to (G, p).

The graph G is rigid in Rd if its generic realizations in Rd are
rigid. It is globally rigid in Rd if its generic realizations in Rd

are globally rigid.

We say that G is minimally globally rigid in Rd if it is globally
rigid, but G− e is not globally rigid for any edge e ∈ E(G). We
define minimally rigid graphs similarly.
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Matroid structure

The (edge sets of) minimally rigid graphs on n vertices form
the bases of a matroid. In particular, they always have the
same number of edges. This number is rd(Kn), the rank of the
generic rigidity matroid in d dimensions and on n vertices.

The (edge sets of) minimally globally rigid graphs do not form
a matroid.

For example, if d = 1, then
• minimally rigid graphs⇔ trees,
• minimally globally rigid graphs⇔ minimally 2-connected
graphs.
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Back to the theorem – why do we care?

Theorem.
If G is a minimally globally rigid graph in Rd on n ≥ d+ 2

vertices and m edges, then m ≤ n(d+ 1)−
(
d+2
2

)
.

Why do we care?

• It’s a nice clean result.
• Studying the minimal elements of a graph family may be
useful for combinatorial characterizations.

• In particular, by simple counting we have the

Corollary. (G., Jordán, 2022)
If G is a minimally globally rigid graph in Rd, then G has a
vertex of degree at most 2d+ 1.
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Back to the theorem – where does the bound come from?

Theorem.
If G is a minimally globally rigid graph in Rd on n ≥ d+ 2

vertices and m edges, then m ≤ n(d+ 1)−
(
d+2
2

)
.

What does n(d+ 1)−
(
d+2
2

)
mean?
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The meaning of the bound

First idea:
n(d+ 1)−

(
d+ 2

2

)
= rd+1(Kn),

i.e., the number of edges required for rigidity in d+ 1

dimensions.

Second idea:

n(d+ 1)−
(
d+ 2

2

)
= nd−

(
d+ 1

2

)
+ n− d− 1

= rd(Kn) + n− d− 1

... what does n− d− 1 mean?
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What does n− d− 1 mean?

Let (G, p) be a realization in Rd. A symmetric matrix Ω ∈ Rn×n

is a stress matrix of (G, p) if

• it is a “G-matrix”: Ω(ij) = 0 whenever vivj /∈ E(G), and
• equilibrium condition: PΩ = 0, where

P =

(
p(v1) p(v2) . . . p(vn)

1 1 . . . 1

)
∈ R(d+1)×n

Theorem. (Connelly, 2005 + Gortler, Healy, Thurston, 2010)
The graph G on n ≥ d+ 2 vertices is globally rigid in Rd

⇔ some generic (G, p) has a stress matix of rank n− d− 1

⇔ every generic (G, p) has a stress matix of rank n− d− 1.
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Fundamental stresses

Given a generic realization (G, p), the stress matrices of (G, p)

form a linear space. We can describe a basis of this space as
follows:

• Fix any maximal independent subgraph G0 of G.
• For any uv ∈ E(G) \ E(G0) there is a unique stress matrix
Ωuv supported on E(G0) + uv such that Ωuv = 1.

• {Ωuv, uv ∈ E(G) \ E(G0)} forms a basis of the space of
stress matrices of (G, p). I will call these the fundamental
stresses of (G, p) with respect to G0.
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Back to the theorem – why is it true?

Theorem.
If G is a minimally globally rigid graph in Rd on n ≥ d+ 2

vertices and m edges, then m ≤ n(d+ 1)−
(
d+2
2

)
.

• When d = 1, this says that minimally 2-connected graphs
have at most 2n− 3 edges. This is a nice exercise. It was
(probably) shown by Mader in the early ’70s.

• When d = 2 this says that minimally globally rigid graphs
in the plane have at most 3n− 6 edges. Jordán (2017)
showed this using the constructive characterization of
globally rigid graphs in R2.

In both cases the only tight example is Kd+2.
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The key lemma

Lemma.
Let A1 . . . , Ak ∈ Rn×n be matrices, ti, i ∈ {1, . . . , k} scalars and
suppose that

∑k
i=1 tiAi has rank r. Then there is a subset

I ⊆ {1, . . . , k} of size at most r and scalars t′i, i ∈ I such that∑
i∈I t

′
iAi has rank at least r.
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Proving the theorem from the lemma

• Suppose that G is globally rigid with
m > rd(Kn) + n− d− 1 edges. Take any minimally rigid
spanning subgraph G0 and a generic realization (G, p). Let
Ω1, . . . ,Ωk be the fundamental stresses of (G, p) w.r.t. G0.
Note that k > n− d− 1.

• By the stress matrix theorem, there is a linear combination∑k
i=1 tiΩi that has rank n− d− 1. Hence by the lemma

there is some matrix
∑

i∈I t
′
iΩi of rank n− d− 1 that uses

at most n− d− 1 of the fundamental stresses.
• This is a stress matrix of a subgraph G′ on at most
rd(Kn) + n− d− 1 edges. By the stress matrix theorem
again, G′ is globally rigid. This means that G was not
minimally globally rigid.
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Proving the lemma

The main idea:

• (By passing to a submatrix we may assume that r = n.)
• Consider the function f : Rk → R defined by

(x1, . . . , xk) 7→ det

(
k∑

i=1

xiAi

)
.

This is a polynomial of degree at most n. It is not
identically zero, since f(t1, . . . , tk) 6= 0.

• The lemma follows from looking at f hard enough. (We do
not need to look too hard.)
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Remark: the discrete version

The “discrete version” of the lemma is also true:

Lemma. (G., 2023+)
Let A1 . . . , Ak ∈ Rn×n be matrices such that

∑k
i=1Ai has rank

r. Then there is a subset I ⊆ {1, . . . , k} of size at most r such
that

∑
i∈I Ai has rank at least r.

(Does this have any applications in rigidity theory?)
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Tightness and minimum degree

Theorem. (G., Jordán, 2022)
The only minimally globally rigid graph in Rd on n ≥ d+ 2

vertices and with m = n(d+ 1)−
(
d+2
2

)
edges is Kd+2.

Theorem. (G., Jordán, 2022)
If G is a minimally globally rigid graph in Rd, then G has a
vertex of degree at most 2d+ 1.

Figure 1: The graph of the icosahedron braced with one edge is
minimally globally rigid in R3 with minimum degree 5 = 2d− 1. 15



The “real” explanation?

Let’s return to the interpretation

n(d+ 1)−
(
d+ 2

2

)
= rd+1(Kn).

Is there a connection between global rigidity in Rd and rigidity
in Rd+1?
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The “real” explanation?

Let’s return to the interpretation

n(d+ 1)−
(
d+ 2

2

)
= rd+1(Kn).

Is there a connection between global rigidity in Rd and rigidity
in Rd+1?

There is!

Theorem. (Jordán, 2017)
If G is rigid in Rd+1, then it is globally rigid in Rd.
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The globally linked conjecture

Theorem. (Jordán, 2017)
If G is rigid in Rd+1, then it is globally rigid in Rd.

Conjecture. (G., Jordán, 2022)
If a pair of vertices {u, v} is linked in G in Rd+1, then it is
globally linked in G in Rd.

The pair {u, v} is linked (globally linked, resp.) in G in Rd if for
every generic realization (G, p) in Rd, the set

{||q(u)− q(v)|| : (G, q) is equivalent to (G, p)}

is finite (a singleton, resp.).
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A partial result and an interesting consequence

Conjecture. (G., Jordán, 2022)
If a pair of vertices {u, v} is linked in G in Rd+1, then it is
globally linked in G in Rd.

This would imply that minimally globally rigid graphs in Rd are
independent in Rd+1. It would follow that such graphs are not
only sparse, but everywhere sparse.

Theorem. (G., Jordán, 2022)
The conjecture is true for d = 1, 2.

18



Yet another interpretation of the bound

Recall: the bound in the theorem was

n(d+ 1)−
(
d+ 2

2

)
= rd(Kn) + n− d− 1.

We interpreted n− d− 1 as the maximum rank of stress
matrices at generic realizations.

The GHT paper also gives a different interpretation in terms of
the shared stress kernel. Using this notion I can give a
different proof of our theorem.
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A very recent result

Theorem. (G., 2023+)
If G is minimally globally rigid in Rd, then for each subset
X ⊆ V (G) of vertices with |X| ≥ d+ 1 we have

|E(X)| ≤ rd(G[X]) + |X| − d− 1 ≤ (d+ 1)|X| −
(
d+ 2

2

)
.

Tibor Jordán and Soma Villányi recently also gave a
(completely different) proof of this for the subsets X such that
G[X] is rigid in Rd.
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To recap

Theorem.
If G is a minimally globally rigid graph in Rd on n ≥ d+ 2

vertices and m edges, then m ≤ n(d+ 1)−
(
d+2
2

)
.

• Using the stress matrix theorem + linear algebra we could
also characterize tightness, but we could not prove
everywhere sparsity.

• There is a conjectured generalization which would also
imply everywhere sparsity. It does not seem to help in
characterizing tightness.

• Using the notion of a shared stress kernel + algebraic
geometry I can prove everywhere sparsity, but cannot
characterize tightness.
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