Algebraic matroids: the combinatorics of (finite) solvability

Dániel Garamvölgyi daniel.garamvolgyi@ttk.elte.hu 2023.03.21.

Outline

Outline of this talk:

- What is an algebraic matroid?
- Where can we find algebraic matroids "in nature"?
 → "Combinatorics of (finite) solvability."
- Is there a (nice) "combinatorics of unique solvability"? \rightarrow Not really.

(conference submission:

"Algebraic realizations of pairs of closure operators")

I will assume familiarity with the basic notions of matroid theory.

What is an algebraic matroid?

Linear matroid:

representation by vectors in a vector space + linear independence.

Algebraic matroid:

representation by elements in a field extension + algebraic independence.

For example, take the polynomials $\{x^2, y^2, xy^2, x^2 + y^2\}$ over \mathbb{Q} .

Let $K \subseteq L$ be fields and $f_1, \ldots, f_m \in L$. We say that $\{f_1, \ldots, f_n\}$ is **algebraically dependent** over K if there is some nonzero polynomial $G \in K[t_1, \ldots, t_m]$ such that $G(f_1, \ldots, f_m) = 0$. For example:

- $\{\sqrt{2}, \sqrt{3}, \sqrt{6}\}$ is algebraically dependent over \mathbb{Q} : $\sqrt{2}\sqrt{3} - \sqrt{6} = 0$, so they satisfy $G(t_1, t_2, t_3) = t_1t_2 - t_3$.
- $\{x^2, y^2, xy^2\}$ is algebraically dependent over $\mathbb{Q}/\mathbb{R}/\mathbb{C}$: $x^2(y^2)^2 - (xy^2)^2 = 0$, so they satisfy $G(t_1, t_2, t_3) = t_1t_2^2 - t_3^2$.

If $\{f_1, \ldots, f_m\}$ is not algebraically dependent over K, then it is algebraically independent over K.

The algebraic matroid corresponding to $\{f_1, \ldots, f_m\}$ over K is the matroid on $\{1, \ldots, m\}$ where a subset I is independent if and only if $\{f_i : i \in I\}$ is algebraically independent over K.

A matroid is **algebraic** over *K* if it is isomorphic to some matroid of the above form.

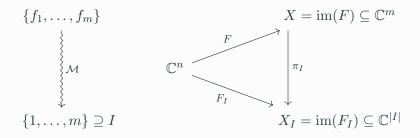
- The matroid corresponding to $\{x^2, y^2, xy^2, x^2 + y^2\}$ over \mathbb{Q} is $U_{2,4}$.
- Linear representation \rightarrow algebraic representation by linear forms.
- Over fields of characteristic zero (e.g., $\mathbb{Q}, \mathbb{R}, \mathbb{C}$) every algebraic matroid is also linear.

... then what is the point of studying algebraic matroids?

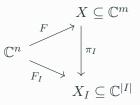
- In some cases the algebraic representation is the "natural" one.
- In some cases the algebraic representation carries interesting additional information.
- (Also, over fields of positive characteristic (e.g., F_p) the situation is much more complicated/interesting.)

The geometric picture – the setup

- Let $f_1, \ldots, f_m \in \mathbb{C}[x_1, \ldots, x_n]$ be polynomials and let \mathcal{M} be the algebraic matroid on $\{1, \ldots, m\}$ corresponding to $\{f_1, \ldots, f_m\}$ over \mathbb{C} .
- Let $F = (f_1, \ldots, f_m) : \mathbb{C}^n \to \mathbb{C}^m$ be a polynomial map consisting of these polynomials.
- For $I \subseteq \{1, \ldots, m\}$, let $F_I = (f_i : i \in I) : \mathbb{C}^n \mapsto \mathbb{C}^{|I|}$.



The geometric picture – correspondences

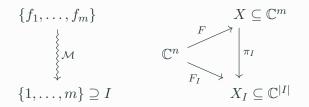


I is a spanning set in $\mathcal{M} \iff$

for "almost all" $x \in X_I$, the equation $\pi_I(y) = x$ has finitely many solutions.

 I is an independent set in $\mathcal{M} \Longleftrightarrow$

for "almost all" $x \in \mathbb{C}^{|I|}$, the equation $\pi_I(y) = x$ has a solution.



I will describe two examples of this phenomenon:

- rigidity theory,
- low-rank matrix completion.

Let G = (V, E) be a graph, |V| = n, |E| = m.

A *d*-dimensional **framework** is a pair (G, p), where $p : V \to \mathbb{R}^d$ (or equivalently, $p \in \mathbb{R}^{nd}$).

Two frameworks (G, p) and (G, q) are **congruent** if

$$||p(u) - p(v)|| = ||q(u) - q(v)||, \quad \forall u, v \in V.$$

A framework (G, p) is **rigid** if there are only finitely many congruence classes of frameworks (G, q) such that the length of each edge of G is the same in (G, p) and (G, q).

Figure 1: Rigid frameworks for which there are two congruence classes of frameworks with the same vector of edge lengths.

For $u, v \in V$, let us define a polynomial function $m_{uv} : \mathbb{R}^{nd} \to \mathbb{R}$ by

$$m_{uv}(p) = ||p(u) - p(v)||^2 = \sum_{i=1}^{d} (p(u)_i - p(v)_i)^2,$$

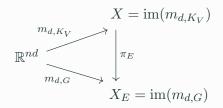
and let

$$m_{d,G}: (m_{uv}, uv \in E): \mathbb{R}^{nd} \to \mathbb{R}^m.$$

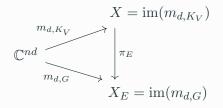
- Two frameworks (G, p) and (G, q) are congruent if and only if $m_{d,K_V}(p) = m_{d,K_V}(q)$.
- A framework (G, p) is rigid if and only if

$$\{m_{d,K_V}(q): q \in \mathbb{R}^{nd}, m_{d,G}(q) = m_{d,G}(p)\}$$

is finite.



This looks almost like our geometric picture from before.



The algebraic matroid corresponding to this picture is the generic *d*-dimensional rigidity matroid $\mathcal{R}_d(K_V)$. Translated back to algebra, this is the algebraic matroid corresponding to the "distance polynomials" $\{m_{uv}, uv \in E(K_V)\}$ over \mathbb{C} .

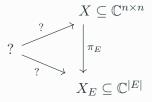
A graph G = (V, E) is **rigid in** \mathbb{R}^d if E is a spanning set in $\mathcal{R}_d(K_V)$. This means that "almost all" d-dimensional frameworks (G, p) are rigid.

Let r be an integer and $A \in \mathbb{C}^{n \times n}$ a matrix that is only partially filled. Can the rest of the elements of A be filled in so that the resulting matrix A' has rank at most r?

The entries of an $n \times n$ matrix correspond to the edges of $K_{n,n}$. The set of filled entries in A correspond to some subset $E \subseteq E(K_{n,n})$. Let $X \subseteq \mathbb{C}^{n \times n}$ be the set of matrices of rank at most r, and W_E the set of partially filled matrices that can be completed to a matrix of rank at most r. Then we have the following picture.

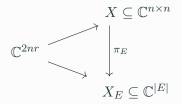
$$X \subseteq \mathbb{C}^{n \times n}$$
$$\downarrow^{\pi_E}$$
$$X_E \subseteq \mathbb{C}^{|E|}$$

Let $X \subseteq \mathbb{C}^{n \times n}$ be the set of matrices of rank at most r, and W_E the set of partially filled matrices that can be completed to a matrix of rank at most r. Then we have the following picture.



To complete this picture, we can use the fact that a matrix $A \in \mathbb{C}^{n \times n}$ has rank at most r if and only if it can be written as a product $A = BC^T$ with $B, C \in \mathbb{C}^{n \times r}$.

Examples - low-rank matrix completion



This picture encodes an algebraic matroid $C_r(K_{n,n})$; this is the rank-*r* matrix completion matroid.

A subset $E \subseteq E(K_{n,n})$ is independent in $C_r(K_{n,n})$, if "almost all" partially filled matrices where E corresponds to the set of known entries can be completed to a full matrix of rank at most r.

 $C_1(K_{n,n})$ is the graphic matroid of $K_{n,n}$. For $r \ge 2$, no good characterization of $C_r(K_{n,n})$ is known.

In both of these examples, there is also a natural "unique solvability" problem.

- A *d*-dimensional framework (G, p) is globally rigid if the only frameworks (G, q) that have the same edge lengths are the ones congruent to (G, p). A graph G = (V, E) is globally rigid in \mathbb{R}^d if "almost all" *d*-dimensional frameworks (G, p) are globally rigid.
- A bipartite graph G = ([n], [n], E) is **uniquely completable** to rank r if "almost all" partially filled matrices where Ecorresponds to the set of known entries have a unique completion to a matrix of rank at most r.

$I \text{ is spanning in } \mathcal{M} \iff \qquad \begin{array}{l} \text{for "almost all" } x \in X_I, \\ \text{the equation } \pi_I(y) = x \\ \text{has finitely many solutions.} \end{array}$

 $I ext{ is } \ref{eq: I} ext{ in } \mathcal{M} \Longleftrightarrow$

for "almost all" $x \in X_I$, the equation $\pi_I(y) = x$ has a unique solution. I is spanning in $\mathcal{M} \iff$

for "almost all" $x \in X_I$, the equation $\pi_I(y) = x$ has finitely many solutions.

I is **strongly spanning** "in \mathcal{M} " \iff

for "almost all" $x \in X_I$, the equation $\pi_I(y) = x$ has a unique solution.

But strongly spanning sets are determined by the representation, not by the matroid!

Strongly spanning sets can be defined in any algebraic representation *M* (over any field *K*).

We can go one step further and define a closure operator corresponding to strongly spanning sets: the "strong closure" $scl_K^M(I)$ of a subset I is the largest subset of the ground set in which I is strongly spanning.

We also have the usual closure operator cl_K^M of the matroid corresponding to the representation.

Question: given cl_K^M (i.e., the matroid structure) what can we say about scl_K^M (i.e., the combinatorical structure of strongly spanning sets)?

Let $cl = cl_K^M$ and $scl = scl_K^M$.

Since cl is the closure operator of a matroid, it satisfies the *Mac Lane-Steinitz exchange property*:

If $x, y \notin \operatorname{cl}(I)$ and $x \in \operatorname{cl}(I+y)$, then $y \in \operatorname{cl}(I+x)$,

for any subset *I* of the ground set.

In general, scl does not have this property!

But cl and scl also satisfy the following **"mixed exchange property"**:

If $x \notin \operatorname{scl}(I), y \notin \operatorname{cl}(I)$ and $x \in \operatorname{scl}(I+y)$, then $y \in \operatorname{cl}(I+x)$.

Are there any other combinatorial conditions that scl must satisfy? We may look at the edge cases: algebraic representations where scl is the "smallest" and "largest" possible.

Theorem. Any matroid that is algebraic over a field K has an algebraic representation M for which scl_K^M is the identity map on M.

Theorem. If a matroid is linear over a field K, then it has an algebraic representation M for which $\operatorname{scl}_K^M = \operatorname{cl}_K^M$. In particular, if K has characteristic zero, then every algebraic matroid over K has such a representation.

It is unclear whether the same is true for algebraic matroids that are not linear (over a field of positive characteristic).

- Algebraic matroids (over algebraically closed fields) have a nice geometric interpretation.
- Whenever we see a particular kind of "geometric picture", we can suspect that there is an algebraic matroid in the background.
- Algebraic representations also carry the additional structure of strongly spanning sets and the strong closure, but in full generality these do not seem to lead to an interesting combinatorial theory.