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Outline

Outline of this talk:

• What is an algebraic matroid?
• Where can we find algebraic matroids “in nature”?
→ “Combinatorics of (finite) solvability.”

• Is there a (nice) “combinatorics of unique solvability”?
→ Not really.

(conference submission:
“Algebraic realizations of pairs of closure operators”)

I will assume familiarity with the basic notions of matroid
theory.
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What is an algebraic matroid?

Linear matroid:

representation by vectors in a vector space
+

linear independence.

Algebraic matroid:

representation by elements in a field extension
+

algebraic independence.

For example, take the polynomials {x2, y2, xy2, x2 + y2} over Q.
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What is algebraic (in)dependence?

LetK ⊆ L be fields and f1, . . . , fm ∈ L. We say that {f1, . . . , fn}
is algebraically dependent over K if there is some nonzero
polynomial G ∈ K[t1, . . . , tm] such that G(f1, . . . , fm) = 0.

For example:

• {
√
2,
√
3,
√
6} is algebraically dependent over Q:√

2
√
3−

√
6 = 0, so they satisfy G(t1, t2, t3) = t1t2 − t3.

• {x2, y2, xy2} is algebraically dependent over Q/R/C:
x2(y2)2 − (xy2)2 = 0, so they satisfy G(t1, t2, t3) = t1t

2
2 − t23.

If {f1, . . . , fm} is not algebraically dependent over K , then it is
algebraically independent over K .
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Definitions, examples and facts

The algebraic matroid corresponding to {f1, . . . , fm} over K is
the matroid on {1, . . . ,m} where a subset I is independent if
and only if {fi : i ∈ I} is algebraically independent over K .

A matroid is algebraic over K if it is isomorphic to some
matroid of the above form.

• The matroid corresponding to {x2, y2, xy2, x2 + y2} over Q
is U2,4.

• Linear representation→ algebraic representation by
linear forms.

• Over fields of characteristic zero (e.g., Q,R,C) every
algebraic matroid is also linear.

... then what is the point of studying algebraic matroids?
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The point

• In some cases the algebraic representation is the “natural”
one.

• In some cases the algebraic representation carries
interesting additional information.

• (Also, over fields of positive characteristic (e.g., Fp) the situation is
much more complicated/interesting.)
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The geometric picture – the setup

• Let f1, . . . , fm ∈ C[x1, . . . , xn] be polynomials and letM
be the algebraic matroid on {1, . . . ,m} corresponding to
{f1, . . . , fm} over C.

• Let F = (f1, . . . , fm) : Cn → Cm be a polynomial map
consisting of these polynomials.

• For I ⊆ {1, . . . ,m}, let FI = (fi : i ∈ I) : Cn 7→ C|I|.

{f1, . . . , fm} X = im(F ) ⊆ Cm

Cn

{1, . . . ,m} ⊇ I XI = im(FI) ⊆ C|I|

M πI

F

FI
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The geometric picture – correspondences

{f1, . . . , fm} X ⊆ Cm

Cn

{1, . . . ,m} ⊇ I XI ⊆ C|I|

M πI

F

FI

I is a spanning set inM ⇐⇒
for “almost all” x ∈ XI ,
the equation πI(y) = x

has finitely many solutions.

I is an independent set inM ⇐⇒
for “almost all” x ∈ C|I|,
the equation πI(y) = x

has a solution.
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Examples

{f1, . . . , fm} X ⊆ Cm

Cn

{1, . . . ,m} ⊇ I XI ⊆ C|I|

M πI

F

FI

I will describe two examples of this phenomenon:

• rigidity theory,
• low-rank matrix completion.
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Examples – graph rigidity

Let G = (V,E) be a graph, |V | = n, |E| = m.

A d-dimensional framework is a pair (G, p), where p : V → Rd

(or equivalently, p ∈ Rnd).

Two frameworks (G, p) and (G, q) are congruent if

‖p(u)− p(v)‖ = ‖q(u)− q(v)‖ , ∀u, v ∈ V.

A framework (G, p) is rigid if there are only finitely many
congruence classes of frameworks (G, q) such that the length
of each edge of G is the same in (G, p) and (G, q).
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Examples – graph rigidity

Figure 1: Rigid frameworks for which there are two congruence
classes of frameworks with the same vector of edge lengths.
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Examples – graph rigidity

For u, v ∈ V , let us define a polynomial function muv : Rnd → R
by

muv(p) = ‖p(u)− p(v)‖2 =
d∑

i=1

(p(u)i − p(v)i)
2,

and let
md,G : (muv, uv ∈ E) : Rnd → Rm.

• Two frameworks (G, p) and (G, q) are congruent if and
only if md,KV

(p) = md,KV
(q).

• A framework (G, p) is rigid if and only if

{md,KV
(q) : q ∈ Rnd,md,G(q) = md,G(p)}

is finite.
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Examples – graph rigidity

X = im(md,KV
)

Rnd

XE = im(md,G)

πE

md,KV

md,G

This looks almost like our geometric picture from before.

12



Examples – graph rigidity

X = im(md,KV
)

Cnd

XE = im(md,G)

πE

md,KV

md,G

The algebraic matroid corresponding to this picture is the
generic d-dimensional rigidity matroid Rd(KV ). Translated
back to algebra, this is the algebraic matroid corresponding to
the “distance polynomials” {muv, uv ∈ E(KV )} over C.

A graph G = (V,E) is rigid in Rd if E is a spanning set in
Rd(KV ). This means that “almost all” d-dimensional
frameworks (G, p) are rigid.
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Examples – low-rank matrix completion

Let r be an integer and A ∈ Cn×n a matrix that is only partially
filled. Can the rest of the elements of A be filled in so that the
resulting matrix A′ has rank at most r?

The entries of an n× n matrix correspond to the edges of Kn,n.
The set of filled entries in A correspond to some subset
E ⊆ E(Kn,n).
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Examples – low-rank matrix completion

Let X ⊆ Cn×n be the set of matrices of rank at most r, andWE

the set of partially filled matrices that can be completed to a
matrix of rank at most r. Then we have the following picture.

X ⊆ Cn×n

XE ⊆ C|E|

πE

15



Examples – low-rank matrix completion

Let X ⊆ Cn×n be the set of matrices of rank at most r, andWE

the set of partially filled matrices that can be completed to a
matrix of rank at most r. Then we have the following picture.

X ⊆ Cn×n

?

XE ⊆ C|E|

πE

?

?

To complete this picture, we can use the fact that a matrix
A ∈ Cn×n has rank at most r if and only if it can be written as a
product A = BCT with B,C ∈ Cn×r .
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Examples – low-rank matrix completion

X ⊆ Cn×n

C2nr

XE ⊆ C|E|

πE

This picture encodes an algebraic matroid Cr(Kn,n); this is the
rank-r matrix completion matroid.

A subset E ⊆ E(Kn,n) is independent in Cr(Kn,n), if “almost
all” partially filled matrices where E corresponds to the set of
known entries can be completed to a full matrix of rank at
most r.

C1(Kn,n) is the graphic matroid of Kn,n. For r ≥ 2, no good
characterization of Cr(Kn,n) is known. 16



Unique solvability

In both of these examples, there is also a natural “unique
solvability” problem.

• A d-dimensional framework (G, p) is globally rigid if the
only frameworks (G, q) that have the same edge lengths
are the ones congruent to (G, p). A graph G = (V,E) is
globally rigid in Rd if “almost all” d-dimensional
frameworks (G, p) are globally rigid.

• A bipartite graph G = ([n], [n], E) is uniquely completable
to rank r if “almost all” partially filled matrices where E

corresponds to the set of known entries have a unique
completion to a matrix of rank at most r.
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Combinatorics of unique solvability?

I is spanning inM ⇐⇒
for “almost all” x ∈ XI ,
the equation πI(y) = x

has finitely many solutions.

I is ??? inM ⇐⇒
for “almost all” x ∈ XI ,
the equation πI(y) = x

has a unique solution.

18



Combinatorics of unique solvability?

I is spanning inM ⇐⇒
for “almost all” x ∈ XI ,
the equation πI(y) = x

has finitely many solutions.

I is strongly spanning “inM”⇐⇒
for “almost all” x ∈ XI ,
the equation πI(y) = x

has a unique solution.

But strongly spanning sets are determined by the
representation, not by the matroid!
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Closure and strong closure

Strongly spanning sets can be defined in any algebraic
representationM (over any field K).

We can go one step further and define a closure operator
corresponding to strongly spanning sets: the “strong closure”
sclMK (I) of a subset I is the largest subset of the ground set in
which I is strongly spanning.

We also have the usual closure operator clMK of the matroid
corresponding to the representation.

Question: given clMK (i.e., the matroid structure) what can we
say about sclMK (i.e., the combinatorical structure of strongly
spanning sets)?
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The mixed exchange property

Let cl = clMK and scl = sclMK .

Since cl is the closure operator of a matroid, it satisfies the
Mac Lane-Steinitz exchange property:

If x, y /∈ cl(I) and x ∈ cl(I + y), then y ∈ cl(I + x),

for any subset I of the ground set.

In general, scl does not have this property!

But cl and scl also satisfy the following “mixed exchange
property”:

If x /∈ scl(I), y /∈ cl(I) and x ∈ scl(I + y), then y ∈ cl(I + x).
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The edge cases

Are there any other combinatorial conditions that scl must
satisfy? We may look at the edge cases: algebraic
representations where scl is the “smallest” and “largest”
possible.

Theorem. Any matroid that is algebraic over a field K has an
algebraic representationM for which sclMK is the identity map
onM .

Theorem. If a matroid is linear over a field K , then it has an
algebraic representationM for which sclMK = clMK . In particular,
if K has characteristic zero, then every algebraic matroid over
K has such a representation.

It is unclear whether the same is true for algebraic matroids
that are not linear (over a field of positive characteristic).
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Main takeaways

• Algebraic matroids (over algebraically closed fields) have a
nice geometric interpretation.

• Whenever we see a particular kind of “geometric picture”,
we can suspect that there is an algebraic matroid in the
background.

• Algebraic representations also carry the additional
structure of strongly spanning sets and the strong closure,
but in full generality these do not seem to lead to an
interesting combinatorial theory.
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